Skip to main content
Log in

Mural granulosa cells support to maintain the viability of growing porcine oocytes and its developmental competence after insemination

  • Reproductive Physiology and Disease
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To enhance the in vitro growth of porcine oocytes, we studied the effect of mural granulosa cells (MGCs) on the viability of oocytes attached to granulosa cells (oocyte-granulosa cell complexes, OGCs) that were obtained from early antral follicles.

Methods and results

When OGCs were cultured with MGCs for 12 days, there were significant improvement (P < 0.05) in the robustness of gap junctional communication between the oocyte and the granulosa cells (82% vs. 59%), the survival rate of oocytes (57% vs. 39%), and the diameter of survived oocytes (118 μm vs. 112 μm). The rate of oocyte release of OGCs cultured with MGCs on the 12th day (1.9%) was significantly lower than that of OGCs cultured without MGCs (26%). Complete meiotic arrest was maintained in the group with MGCs (100%), while partial resumption of spontaneous meiosis was noticed in the absence of MGCs (10–19%). Furthermore, the presence of MGCs increased the oocyte maturation rate after maturation culture in both 12- and 14-day culture groups (P < 0.05, 85–88%) compared to OGCs cultured without MGCs (48–60%). MGCs also significantly improved the blastocyst formation rate (day 7) after ICSI (P < 0.05).

Conclusions

The data of this study thus shows that the presence of MGCs during in vitro oocyte growth plays a crucial role in supporting the developmental competence of growing porcine oocytes attached to the granulosa cells via enhancement of their viability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data and materials availability

The data supporting the findings of the current study are available from the corresponding author upon request.

References

  1. Mayo K, Jameson L, Woodruff TK. Eggs in the nest. Endocrinology. 2007;148:3577–9.

    Article  CAS  PubMed  Google Scholar 

  2. Mhawi AJ, Kaňka J, Motlík J. Follicle and oocyte growth in early postnatal calves: cytochemical, autoradiographical and electron microscopical studies. Reprod Nutr Dev. 1991;31:115–26.

    Article  CAS  PubMed  Google Scholar 

  3. Wigglesworth K, Lee KB, Emori C, Sugiura K, Eppig JJ. Transcriptomic diversification of developing cumulus and mural granulosa cells in mouse ovarian follicles. Biol Reprod. 2015;92:1–14.

    Article  CAS  Google Scholar 

  4. Kidder GM, Vanderhyden BC. Bidirectional communication between oocytes and follicle cells: ensuring oocyte developmental competence. Can J Physiol Pharmacol. 2010;88:399–413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jaffe LA, Egbert JR. Regulation of mammalian oocyte meiosis by intercellular communication within the ovarian follicle. Annu Rev Physiol. 2017;79:237–60.

    Article  CAS  PubMed  Google Scholar 

  6. Anderson E, Albertini DF. Gap junctions between the oocyte and companion follicle cells in the mammalian ovary. J Cell Biol. 1976;71:680–6.

    Article  CAS  PubMed  Google Scholar 

  7. Racowsky C, Satterlie RA. Metabolic, fluorescent dye and electrical coupling between hamster oocytes and cumulus cells during meiotic maturation in vivo and in vitro. Dev Biol. 1985;108:191–202.

    Article  CAS  PubMed  Google Scholar 

  8. Eppig JJ. Intercommunication between mammalian oocytes and companion somatic cells. BioEssays. 1991;13:569–74.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang M, Su YQ, Sugiura K, Xia G, Eppig JJ. Granulosa cell ligand NPPC and its receptor NPR2 maintain meiotic arrest in mouse oocytes. Science. 2010;330:366–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tuji T, Kiyosu C, Akiyama K, Kunieda T. CNP/NPR2 signaling maintains oocyte meiotic arrest in early antral follicles and is suppressed by EGFR-mediated signaling in preovulatory follicles. Mol Reprod Dev. 2012;79:795–802.

    Article  Google Scholar 

  11. Hirao Y, Nagai T, Kubo M, Miyano T, Miyake M, Kato S. In vitro growth and maturation of pig oocytes. J Reprod Fertil. 1994;100:333–9.

    Article  CAS  PubMed  Google Scholar 

  12. Telfer EE. The development of methods for isolation and culture of preantral follicles from bovine and porcine ovaries. Theriogenology. 1996;45:101–10.

    Article  Google Scholar 

  13. Wu J, Emery BR, Carrell DT. In vitro growth, maturation, fertilization, and embryonic development of oocytes from porcine preantral follicles. Biol Reprod. 2001;64:375–81.

    Article  CAS  PubMed  Google Scholar 

  14. Mao J, Wu G, Smith MF, McCauley TC, Cantley TC, Prather RS, et al. Effects of culture medium, serum type, and various concentrations of follicle-stimulating hormone on porcine preantral follicular development and antrum formation in vitro. Biol Reprod. 2002;67:1197–203.

    Article  CAS  PubMed  Google Scholar 

  15. Hashimoto S, Ohsumi K, Tsuji Y, Harauma N, Miyata Y, Fukuda A, et al. Growing porcine oocyte-granulosa cell complexes acquired meiotic competence during in vitro culture. J Reprod Dev. 2007;53:379–84.

    Article  PubMed  Google Scholar 

  16. Wu J, Xu B, Wang W. Effects of luteinizing hormone and follicle stimulating hormone on the developmental competence of porcine preantral follicle oocytes grown in vitro. J Assist Reprod Genet. 2007;24:419–24.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tasaki H, Iwata H, Sato D, Monji Y, Kuwayama T. Estradiol has a major role in antrum formation of porcine preantral follicles cultured in vitro. Theriogenology. 2013;79:809–14.

    Article  CAS  PubMed  Google Scholar 

  18. Kubo N, Cayo-Colca IS, Miyano T. Effect of estradiol-17β during in vitro growth culture on the growth, maturation, cumulus expansion and development of porcine oocytes from early antral follicles. Anim Sci J. 2015;86:251–9.

    Article  CAS  PubMed  Google Scholar 

  19. Itami N, Munakata Y, Shirasuna K, Kuwayama T, Iwata H. Promotion of glucose utilization by insulin enhances granulosa cell proliferation and developmental competence of porcine oocyte grown in vitro. Zygote. 2017;25:65–74.

    Article  CAS  PubMed  Google Scholar 

  20. Munakata Y, Sugimoto A, Shirasuna K, Kuwayama T, Iwata H. Xanthan gum and Locust bean gum gel supports in vitro development of porcine oocytes derived from early antral follicles. J Reprod Dev. 2019;65:551–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cayo-Colca IS, Yamagami Y, Phan TC, Miyano T. A combination of FSH and dibutyryl cyclic AMP promote growth and acquisition of meiotic competence of oocytes from early porcine antral follicles. Theriogenology. 2011;75:1602–12.

    Article  CAS  PubMed  Google Scholar 

  22. Sugimoto H, Kida Y, Miyamoto Y, Kitada K, Matsumoto K, Saeki K, et al. Growth and development of rabbit oocytes in vitro: effect of fetal bovine serum concentration on culture medium. Theriogenology. 2012;78:1040–7.

    Article  CAS  PubMed  Google Scholar 

  23. Hirao Y, Itoh T, Shimizu M, Iga K, Aoyagi K, Kobayashi M, et al. In vitro growth and development of bovine oocyte-granulosa cell complexes on the flat substratum: effects of high polyvinylpyrrolidone concentration in culture medium. Biol Reprod. 2004;70:83–91.

    Article  CAS  PubMed  Google Scholar 

  24. Eppig JJ, Wigglesworth K. Factors affecting the developmental competence of mouse oocytes grown in vitro: oxygen concentration. Mol Reprod Dev. 1995;42:447–56.

    Article  CAS  PubMed  Google Scholar 

  25. Hirao Y, Shimizu M, Iga K, Takenouchi N. Optimization of oxygen concentration for growing bovine oocytes in vitro: constant low and high oxygen concentrations compromise the yield of fully grown oocytes. J Reprod Dev. 2012;58:204–11.

    Article  CAS  PubMed  Google Scholar 

  26. Hirao Y, Shimizu M, Iga K, Takenouchi N. Growth of bovine oocyte-granulosa cell complexes cultured individually in microdrops of various sizes. J Reprod Dev. 2009;55:88–93.

    Article  PubMed  Google Scholar 

  27. Yamochi T, Hashimoto S, Yamanaka M, Nakaoka Y, Morimoto Y. Optimum culture duration for growing oocytes to attain meiotic and fertilization competence. J Reprod Dev. 2017;63:591–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang WH, Abeydeera LR, Okuda K, Niwa K. Penetration of porcine oocytes during maturation in vitro by cryopreserved, ejaculated spermatozoa. Biol Reprod. 1994;50:510–5.

    Article  CAS  PubMed  Google Scholar 

  29. Abeydeera LR, Day BN. In vitro penetration of pig oocytes in a modified Tris-buffered medium: effect of BSA, caffeine and calcium. Theriogenology. 1997;48(4):537–44.

    Article  CAS  PubMed  Google Scholar 

  30. Hashimoto S. Application of in vitro maturation to assisted reproductive technology. J Reprod Dev. 2009;55:1–10.

    Article  CAS  PubMed  Google Scholar 

  31. Dieci C, Lodde V, Franciosi F, Lagutina I, Tessaro I, Modina SC, et al. The effect of cilostamide on gap junction communication dynamics, chromatin remodeling, and competence acquisition in pig oocytes following parthenogenetic activation and nuclear transfer. Biol Reprod. 2013;89:68.

    Article  PubMed  Google Scholar 

  32. Yoshioka K, Suzuki C, Onishi A. Defined system for in vitro production of porcine embryos using a single basic medium. J Reprod Dev. 2008;54:208–13.

    Article  PubMed  Google Scholar 

  33. Pangas SA, Matzuk MM. Genetic models for transforming growth factor beta superfamily signaling in ovarian follicle development. Mol Cell Endocrinol. 2004;225:83–91.

    Article  CAS  PubMed  Google Scholar 

  34. McNatty KP, Juengel JL, Reader KL, Lun S, Myllymaa S, Lawrence SB, et al. Bone morphogenetic protein 15 and growth differentiation factor 9 co-operate to regulate granulosa cell function in ruminants. Reproduction. 2005;129:481–7.

    Article  CAS  PubMed  Google Scholar 

  35. Mottershead DG, Ritter LJ, Gilchrist RB. Signalling pathways mediating specific synergistic interactions between GDF9 and BMP15. Mol Hum Reprod. 2012;18:121–8.

    Article  CAS  PubMed  Google Scholar 

  36. Wang XL, Wang K, Zhao S, Wu Y, Gao H, Zeng SM. Oocyte-Secreted Growth Differentiation Factor 9 Inhibits BCL-2-Interacting Mediator of Cell Death-Extra Long Expression in Porcine Cumulus Cell. Biol Reprod. 2013;89:1–9.

    Article  CAS  Google Scholar 

  37. Zhai B, Liu H, Li X, Dai L, Gao Y, Li C, et al. BMP15 prevents cumulus cell apoptosis through CCL2 and FBN1 in porcine ovaries. Cell Physiol Biochem. 2013;32:264–78.

    Article  CAS  PubMed  Google Scholar 

  38. Miyoshi T, Otsuka F, Nakamura E, Inagaki K, Ogura-Ochi K, Tsukamoto N, et al. Regulatory role of kit ligand-c-kit interaction and oocyte factors in steroidogenesis by rat granulosa cells. Mol Cell Endocrinol. 2012;358:18–26.

    Article  CAS  PubMed  Google Scholar 

  39. Hutt KJ, Mclaughlin EA, Holland MK. Kit ligand and c-Kit have diverse roles during mammalian oogenesis and folliculogenesis. Mol Hum Reprod. 2006;12:61–9.

    Article  CAS  PubMed  Google Scholar 

  40. Norris RP, Ratzan WJ, Freudzon M, Mehlmann LM, Krall J, Movsesian MA, et al. Cyclic GMP from the surrounding somatic cells regulates cyclic AMP and meiosis in the mouse oocyte. Development. 2009;136:1869–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Carabatsos MJ, Sellitto C, Goodenough DA, Albertini DF. Oocyte-granulosa cell heterologous gap junctions are required for the coordination of nuclear and cytoplasmic meiotic competence. Dev Biol. 2000;226:167–79.

    Article  CAS  PubMed  Google Scholar 

  42. Biggers JD, Whittingham DG, Donahue RP. The pattern of energy metabolism in the mouse oocyte and zygote. Proc Natl Acad Sci U S A. 1967;58:560–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Downs SM, Utecht AM. Metabolism of radiolabeled glucose by mouse oocytes and oocyte cumulus cell complexes. Biol Reprod. 1999;60:1446–52.

    Article  CAS  PubMed  Google Scholar 

  44. Eppig JJ, Pendola FL, Wigglesworth K, Pendola JK. Mouse oocytes regulate metabolic cooperativity between granulosa cells and oocytes: amino acid transport. Biol Reprod. 2005;73:351–7.

    Article  CAS  PubMed  Google Scholar 

  45. Fair T, Hyttel P, Greve T. Bovine oocyte diameter in relation to maturational competence and transcriptional activity. Mol Reprod Dev. 1995;42:437–42.

    Article  CAS  PubMed  Google Scholar 

  46. Anguita B, Jimenez-Macedo AR, Izquierdo D, Mogas T, Paramio MT. Effect of oocyte diameter on meiotic competence, embryo development, p34 (cdc2) expression and MPF activity in prepubertal goat oocytes. Theriogenology. 2007;67:526–36.

    Article  CAS  PubMed  Google Scholar 

  47. Hashimoto S, Saeki K, Nagao Y, Minami N, Yamada M, Utsumi K. Effects of cumulus cell density during in vitro maturation of the developmental competence of bovine oocytes. Theriogenology. 1998;49:1451–63.

    Article  CAS  PubMed  Google Scholar 

  48. Han ZB, Lan GC, Wu YG, Han D, Feng WG, Wang JZ, et al. Interactive effects of granulosa cell apoptosis, follicle size, cumulus–oocyte complex morphology, and cumulus expansion on the developmental competence of goat oocytes: a study using the well-in-drop culture system. Reproduction. 2006;132:749–58.

    Article  CAS  PubMed  Google Scholar 

  49. Munakata Y, Ueda M, Kawahara-Miki R, Kansaku K, Itami N, Shirasuna K, et al. Follicular factors determining granulosa cell number and developmental competence of porcine oocytes. J Assist Reprod Genet. 2018;35:1809–19.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hirao Y. Isolation of ovarian components essential for growth and development of mammalian oocytes in vitro. J Reprod Dev. 2012;58:167–74.

    Article  CAS  PubMed  Google Scholar 

  51. Eppig JJ, Schroeder AC. Capacity of mouse oocytes from preantral follicles to undergo embryogenesis and development to live young after growth, maturation, and fertilization in vitro. Biol Reprod. 1989;41:268–76.

    Article  CAS  PubMed  Google Scholar 

  52. Munakata Y, Kawahara-Miki R, Shiratsuki S, Tasaki H, Itami N, Shirasuna K, et al. Gene expression patterns in granulosa cells and oocytes at various stages of follicle development as well as in in vitro grown oocyte-and-granulosa cell complexes. J Reprod Dev. 2016;62:359–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Drs. USK Gamage and A. Takeshita for their helpful comments and M Brahmajosyula, PhD, for editing a draft of this manuscript.

Funding

Part of this work was supported by a grant from the Japan Society for the Promotion of Science (KAKENHI 20K09674 to S.H.) and IVF Japan group.

Author information

Authors and Affiliations

Authors

Contributions

TY and SH designed the experiment, interpreted the results, and wrote the manuscript with help from all authors. YM supervised the project.

Corresponding author

Correspondence to Shu Hashimoto.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

Supplementary figure Representative images of culturing oocytes. a Intact oocyte on day 10. b Shrunken oocyte on day 6. c Fragmented oocyte on day 6. The region of cell membrane is clearly visible under an interference phase contrast microscope even after granulosa cell proliferation. Bar: 20 μm (PNG 1725 kb).

ESM 2

(DOCX 24 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamochi, T., Hashimoto, S. & Morimoto, Y. Mural granulosa cells support to maintain the viability of growing porcine oocytes and its developmental competence after insemination. J Assist Reprod Genet 38, 2591–2599 (2021). https://doi.org/10.1007/s10815-021-02212-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-021-02212-2

Keywords

Navigation