Skip to main content

Advertisement

Log in

Na,K-ATPase Atp1a4 isoform is important for maintaining sperm flagellar shape

  • Gamete Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study is to investigate the mechanisms by which the testis specific Na,K-ATPase ion transport system (Atp1a4) controls sperm morphology and shape.

Methods

Sperm from wild-type (WT) and Atp1a4 knockout (Atp1a4 KO) mice were analyzed morphologically, using light, transmission, and scanning electron microscopy; and functionally, applying sperm osmotic challenge and viability tests. In addition, a sperm proteomic study was performed.

Results

Light microscopy confirmed that sperm lacking Atp1a4 present a bend at the junction of the mid- and principal piece of the flagellum. This bend had different degrees of angulation, reaching occasionally a complete flagellar retroflexion. The defect appeared in sperm collected from the cauda epididymis, but not the epididymal caput or the testis. Transmission and scanning electron microscopy revealed a dilation of the cytoplasm at the site of the bend, with fusion of the plasma membrane in overlapping segments of the flagellum. This was accompanied by defects in the axoneme and peri-axonemal structures. Sperm from Atp1a4 KO mice showed an abnormal response to hypoosmotic challenge with decreased viability, suggesting reduced capacity for volume regulation. Exposure to Triton X-100 only partially recovered the flagellar bend of Atp1a4 KO sperm, showing that factors other than osmotic regulation contribute to the flagellar defect. Interestingly, several key sperm structural proteins were expressed in lower amounts in Atp1a4 KO sperm, with no changes in their localization.

Conclusions

Altogether, our results show that Atp1a4 plays an important role in maintaining the proper shape of the sperm flagellum through both osmotic control and structurally related mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5.
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kaplan JH. Biochemistry of Na,K-ATPase. Annu Rev Biochem. 2002;71:511–35.

    Article  CAS  PubMed  Google Scholar 

  2. Feraille E, Doucet A. Sodium-potassium-adenosinetriphosphatase-dependent sodium transport in the kidney: hormonal control. Physiol Rev. 2001;81(1):345–418.

    Article  CAS  PubMed  Google Scholar 

  3. Gloor SM. Relevance of Na,K-ATPase to local extracellular potassium homeostasis and modulation of synaptic transmission. FEBS Lett. 1997;412(1):1–4.

    Article  CAS  PubMed  Google Scholar 

  4. Hoffmann EK, Simonsen LO. Membrane mechanisms in volume and pH regulation in vertebrate cells. Physiol Rev. 1989;69(2):315–82.

    Article  CAS  PubMed  Google Scholar 

  5. Nyblom M, Poulsen H, Gourdon P, Reinhard L, Andersson M, Lindahl E, et al. Crystal structure of Na+, K(+)-ATPase in the Na(+)-bound state. Science. 2013;342(6154):123–7.

    Article  CAS  PubMed  Google Scholar 

  6. Apell HJ, Schneeberger A, Sokolov VS. Partial reactions of the Na,K-ATPase: kinetic analysis and transport properties. Acta Physiol Scand Suppl. 1998;643:235–45.

    CAS  PubMed  Google Scholar 

  7. Vagin O, Sachs G, Tokhtaeva E. The roles of the Na,K-ATPase beta 1 subunit in pump sorting and epithelial integrity. J Bioenerg Biomembr. 2007;39(5-6):367–72.

    Article  CAS  PubMed  Google Scholar 

  8. Ueno S, Takeda K, Noguchi S, Kawamura M. Significance of the beta-subunit in the biogenesis of Na+/K(+)-ATPase. Biosci Rep. 1997;17(2):173–88.

    Article  CAS  PubMed  Google Scholar 

  9. Geering K. Functional roles of Na,K-ATPase subunits. Curr Opin Nephrol Hypertens. 2008;17(5):526–32.

    Article  CAS  PubMed  Google Scholar 

  10. Mobasheri A, Avila J, Cozar-Castellano I, Brownleader MD, Trevan M, Francis MJ, et al. Na+, K+-ATPase isozyme diversity; comparative biochemistry and physiological implications of novel functional interactions. Biosci Rep. 2000;20(2):51–91.

    Article  CAS  PubMed  Google Scholar 

  11. Blanco G. Na,K-ATPase subunit heterogeneity as a mechanism for tissue-specific ion regulation. Semin Nephrol. 2005;25(5):292–303.

    Article  CAS  PubMed  Google Scholar 

  12. Syeda SS, Sanchez G, McDermott JP, Hong KH, Blanco G, Georg GI. The Na+ and K+ transport system of sperm (ATP1A4) is essential for male fertility and an attractive target for male contraceptiondagger. Biol Reprod. 2020;103:343–56.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wagoner K, Sanchez G, Nguyen AN, Enders GC, Blanco G. Different expression and activity of the alpha1 and alpha4 isoforms of the Na,K-ATPase during rat male germ cell ontogeny. Reproduction. 2005;130(5):627–41.

    Article  CAS  PubMed  Google Scholar 

  14. McDermott JP, Sanchez G, Chennathukuzhi V, Blanco G. Green fluorescence protein driven by the Na,K-ATPase alpha4 isoform promoter is expressed only in male germ cells of mouse testis. J Assist Reprod Genet. 2012;29(12):1313–25.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jimenez T, McDermott JP, Sanchez G, Blanco G. Na,K-ATPase alpha4 isoform is essential for sperm fertility. Proc Natl Acad Sci U S A. 2011;108(2):644–9.

    Article  CAS  PubMed  Google Scholar 

  16. Stival C, del C Puga Molina L, Paudel B, Buffone MG, Visconti PE, Krapf D. Sperm capacitation and acrosome reaction in mammalian sperm. Adv Anat Embryol Cell Biol. 2016;220:93–106.

    Article  PubMed  Google Scholar 

  17. Jimenez T, Sanchez G, Wertheimer E, Blanco G. Activity of the Na,K-ATPase alpha4 isoform is important for membrane potential, intracellular Ca2+, and pH to maintain motility in rat spermatozoa. Reproduction. 2010;139(5):835–45.

    Article  CAS  PubMed  Google Scholar 

  18. Escalier D. Knockout mouse models of sperm flagellum anomalies. Hum Reprod Update. 2006;12(4):449–61.

    Article  CAS  PubMed  Google Scholar 

  19. Cooper TG, Yeung CH, Wagenfeld A, Nieschlag E, Poutanen M, Huhtaniemi I, et al. Mouse models of infertility due to swollen spermatozoa. Mol Cell Endocrinol. 2004;216(1-2):55–63.

    Article  CAS  PubMed  Google Scholar 

  20. Yeung CH, Barfield JP, Cooper TG. Physiological volume regulation by spermatozoa. Mol Cell Endocrinol. 2006;250(1-2):98–105.

    Article  CAS  PubMed  Google Scholar 

  21. Yeung CH, Anapolski M, Depenbusch M, Zitzmann M, Cooper TG. Human sperm volume regulation. Response to physiological changes in osmolality, channel blockers and potential sperm osmolytes. Hum Reprod. 2003;18(5):1029–36.

    Article  CAS  PubMed  Google Scholar 

  22. Lang F. Mechanisms and significance of cell volume regulation. J Am Coll Nutr. 2007;26(5 Suppl):613S–23S.

    Article  CAS  PubMed  Google Scholar 

  23. Lang F, Busch GL, Volkl H. The diversity of volume regulatory mechanisms. Cell Physiol Biochem. 1998;8(1-2):1–45.

    Article  CAS  PubMed  Google Scholar 

  24. Yeung CH, Cooper TG. Potassium channels involved in human sperm volume regulation--quantitative studies at the protein and mRNA levels. Mol Reprod Dev. 2008;75(4):659–68.

    Article  CAS  PubMed  Google Scholar 

  25. Cooper TG, Yeung CH. Involvement of potassium and chloride channels and other transporters in volume regulation by spermatozoa. Curr Pharm Des. 2007;13(31):3222–30.

    Article  CAS  PubMed  Google Scholar 

  26. Chen Q, Peng H, Lei L, Zhang Y, Kuang H, Cao Y, et al. Aquaporin3 is a sperm water channel essential for postcopulatory sperm osmoadaptation and migration. Cell Res. 2011;21(6):922–33.

    Article  CAS  PubMed  Google Scholar 

  27. Mordel N, Dano I, Epstein-Eldan M, Shemesh A, Schenker JG, Laufer N. Novel parameters of human sperm hypoosmotic swelling test and their correlation to standard spermatogram, total motile sperm fraction, and sperm penetration assay. Fertil Steril. 1993;59(6):1276–9.

    Article  CAS  PubMed  Google Scholar 

  28. Rossato M, Balercia G, Lucarelli G, Foresta C, Mantero F. Role of seminal osmolarity in the reduction of human sperm motility. Int J Androl. 2002;25(4):230–5.

    Article  CAS  PubMed  Google Scholar 

  29. Jeyendran RS, Van der Ven HH, Zaneveld LJ. The hypoosmotic swelling test: an update. Arch Androl. 1992;29(2):105–16.

    Article  CAS  PubMed  Google Scholar 

  30. Kasimanickam RK, Kasimanickam VR, Arangasamy A, Kastelic JP. Associations of hypoosmotic swelling test, relative sperm volume shift, aquaporin7 mRNA abundance and bull fertility estimates. Theriogenology. 2017;89:162–8.

    Article  CAS  PubMed  Google Scholar 

  31. Furimsky A, Vuong N, Xu H, Kumarathasan P, Xu M, Weerachatyanukul W, et al. Percoll gradient-centrifuged capacitated mouse sperm have increased fertilizing ability and higher contents of sulfogalactosylglycerolipid and docosahexaenoic acid-containing phosphatidylcholine compared to washed capacitated mouse sperm. Biol Reprod. 2005;72(3):574–83.

    Article  CAS  PubMed  Google Scholar 

  32. Albert M, Roussel C. Strain differences in the concentration, motility and morphology of epididymal sperm in relation to puberty in mice. Int J Androl. 1984;7(4):334–47.

    Article  CAS  PubMed  Google Scholar 

  33. Yeung CH, Sonnenberg-Riethmacher E, Cooper TG. Infertile spermatozoa of c-ros tyrosine kinase receptor knockout mice show flagellar angulation and maturational defects in cell volume regulatory mechanisms. Biol Reprod. 1999;61(4):1062–9.

    Article  CAS  PubMed  Google Scholar 

  34. Santi CM, Martinez-Lopez P, de la Vega-Beltran JL, Butler A, Alisio A, Darszon A, et al. The SLO3 sperm-specific potassium channel plays a vital role in male fertility. FEBS Lett. 2010;584(5):1041–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yeung CH, Anapolski M, Cooper TG. Measurement of volume changes in mouse spermatozoa using an electronic sizing analyzer and a flow cytometer: validation and application to an infertile mouse model. J Androl. 2002;23(4):522–8.

    PubMed  Google Scholar 

  36. Sipila P, Cooper TG, Yeung CH, Mustonen M, Penttinen J, Drevet J, et al. Epididymal dysfunction initiated by the expression of simian virus 40 T-antigen leads to angulated sperm flagella and infertility in transgenic mice. Mol Endocrinol. 2002;16(11):2603–17.

    Article  CAS  PubMed  Google Scholar 

  37. Cooper TG, Yeung CH. Acquisition of volume regulatory response of sperm upon maturation in the epididymis and the role of the cytoplasmic droplet. Microsc Res Tech. 2003;61(1):28–38.

    Article  PubMed  Google Scholar 

  38. Schneider M, Forster H, Boersma A, Seiler A, Wehnes H, Sinowatz F, et al. Mitochondrial glutathione peroxidase 4 disruption causes male infertility. FASEB J. 2009;23(9):3233–42.

    Article  CAS  PubMed  Google Scholar 

  39. Imai H, Hakkaku N, Iwamoto R, Suzuki J, Suzuki T, Tajima Y, et al. Depletion of selenoprotein GPx4 in spermatocytes causes male infertility in mice. J Biol Chem. 2009;284(47):32522–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yang K, Grzmil P, Meinhardt A, Hoyer-Fender S. Haplo-deficiency of ODF1/HSPB10 in mouse sperm causes relaxation of head-to-tail linkage. Reproduction. 2014;148(5):499–506.

    Article  PubMed  Google Scholar 

  41. Loges NT, Olbrich H, Fenske L, Mussaffi H, Horvath J, Fliegauf M, et al. DNAI2 mutations cause primary ciliary dyskinesia with defects in the outer dynein arm. Am J Hum Genet. 2008;83(5):547–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Guichard C, Harricane MC, Lafitte JJ, Godard P, Zaegel M, Tack V, et al. Axonemal dynein intermediate-chain gene (DNAI1) mutations result in situs inversus and primary ciliary dyskinesia (Kartagener syndrome). Am J Hum Genet. 2001;68(4):1030–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gu NH, Zhao WL, Wang GS, Sun F. Comparative analysis of mammalian sperm ultrastructure reveals relationships between sperm morphology, mitochondrial functions and motility. Reprod Biol Endocrinol. 2019;17(1):66.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank the University of Kansas Medical Center Electron Microscopy Research lab and especially Barbara Fegley for her assistance and expertise with the ultrastructural assessment of spermatozoa. Also, we appreciate the generosity of Drs. A. Kierszenbaum (City University of New York) and L. Ostrowski (University of North Carolina) in providing us with antibodies used in this study. Finally, we thank the National Institutes of Health grant HD102623 for supporting this work.

Funding

This work was supported by the National Institutes of Health grant HD102623.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Blanco.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McDermott, J.P., Numata, S. & Blanco, G. Na,K-ATPase Atp1a4 isoform is important for maintaining sperm flagellar shape. J Assist Reprod Genet 38, 1493–1505 (2021). https://doi.org/10.1007/s10815-021-02087-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-021-02087-3

Keywords

Navigation