Skip to main content
Log in

High-resolution 1H-NMR spectroscopy indicates variations in metabolomics profile of follicular fluid from women with advanced maternal age

  • Assisted Reproduction Technologies
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Aim

To reveal whether there are differences in follicular fluid metabolomics profile of women with advanced maternal age (AMA).

Method

The group with advanced maternal age includes 23 patients above the age of 40, and the control group includes 31 patients aged between 25 and 35 years and AMH values above 1.1 ng/mL with no low ovarian response history. A single follicular fluid sample from a MII oocyte obtained during the oocyte pick-up procedure was analyzed with high-resolution 1H-NMR (nuclear magnetic resonance) spectroscopy. The results were evaluated using advanced bioinformatics analysis methods.

Results

Statistical analysis of the NMR spectroscopy data from two groups showed that α-glucose and β-glucose levels of follicular fluid were decreased in the patients with AMA, while in contrast, lactate and trimethylamine N-oxide (TMAO) levels were increased in these patients compared with the controls. In addition to these, there was an increase in alanine levels and a decrease in acetoacetate levels in patients with AMA. However, these changes were not statistically significant.

Conclusion

Obtained results suggest that the follicular cell metabolism of patients with AMA is different from controls. These environmental changes could be associated with the low success rates of IVF treatment seen in these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wood JW. Fecundity and natural fertility in humans. Oxf Rev Reprod Biol. 1989;11:61–109.

    CAS  PubMed  Google Scholar 

  2. Te Velde ER, Pearson PL. The variability of female reproductive ageing. Hum Reprod Update. 2002;8(2):141–54.

    Google Scholar 

  3. Tatone C, Amicarelli F, Carbone MC, Monteleone P, Caserta D, Marci R, et al. Cellular and molecular aspects of ovarian follicle ageing. Hum Reprod Update. 2008;14(2):131–42.

    CAS  PubMed  Google Scholar 

  4. Wright VC, Schieve LA, Reynolds MA, Jeng G. Assisted reproductive technology surveillance—United States, 2002. Morbidity and Mortality Weekly Report: Surveillance Summaries. 2005;54(2):1–24.

    Google Scholar 

  5. Katz-Jaffe MG, Surrey ES, Minjarez DA, Gustofson RL, Stevens JM, Schoolcraft WB. Association of abnormal ovarian reserve parameters with a higher incidence of aneuploid blastocysts. Obstet Gynecol. 2013;121(1):71–7.

    PubMed  Google Scholar 

  6. Lekamge DN, Barry M, Kolo M, Lane M, Gilchrist RB, Tremellen KP. Anti-Müllerian hormone as a predictor of IVF outcome. Reprod BioMed Online. 2007;14(5):602–10.

    CAS  PubMed  Google Scholar 

  7. Nikolaou D, Templeton A. Early ovarian ageing: a hypothesis: detection and clinical relevance. Hum Reprod. 2003;18(6):1137–9.

    CAS  PubMed  Google Scholar 

  8. Sauer MV, Paulson RJ, Lobo RA. A preliminary report on oocyte donation extending reproductive potential to women over 40. N Engl J Med. 1990;323(17):1157–60.

    CAS  PubMed  Google Scholar 

  9. Fortune JE. Ovarian follicular growth and development in mammals. Biol Reprod. 1994;50(2):225–32.

    CAS  PubMed  Google Scholar 

  10. Nandi S, Kumar VG, Manjunatha BM, Gupta PSP. Biochemical composition of ovine follicular fluid in relation to follicle size. Develop Growth Differ. 2007;49(1):61–6.

    CAS  Google Scholar 

  11. Revelli A, Delle Piane L, Casano S, Molinari E, Massobrio M, Rinaudo P. Follicular fluid content and oocyte quality: from single biochemical markers to metabolomics. Reprod Biol Endocrinol. 2009;7(1):40.

    PubMed  PubMed Central  Google Scholar 

  12. Basuino L, Silveira JC. Human follicular fluid and effects on reproduction. JBRA assisted reproduction. 2016;20(1):38–40.

    PubMed  Google Scholar 

  13. McRae C, Baskind NE, Orsi NM, Sharma V, Fisher J. Metabolic profiling of follicular fluid and plasma from natural cycle in vitro fertilization patients—a pilot study. Fertil Steril. 2012;98(6):1449–57.

    CAS  PubMed  Google Scholar 

  14. Jayaraman V, Ghosh S, Sengupta A, Srivastava S, Sonawat HM, Narayan PK. Identification of biochemical differences between different forms of male infertility by nuclear magnetic resonance (NMR) spectroscopy. J Assist Reprod Genet. 2014;31(9):1195–204.

    PubMed  PubMed Central  Google Scholar 

  15. Lindon JC, Nicholson JK, Holmes E, Everett JR. Metabonomics: metabolic processes studied by NMR spectroscopy of biofluids. Concepts in Magnetic Resonance: An Educational Journal. 2000;12(5):289–320.

    CAS  Google Scholar 

  16. Kolokolova TN, Savel’ev OY, Sergeev NM. Metabolic analysis of human biological fluids by 1 H NMR spectroscopy. J Anal Chem. 2008;63(2):104.

    CAS  Google Scholar 

  17. Gowda GN, Raftery D. Can NMR solve some significant challenges in metabolomics? J Magn Reson. 2015;260:144–60.

    PubMed Central  Google Scholar 

  18. Barding GA, Salditos R, Larive CK. Quantitative NMR for bioanalysis and metabolomics. Anal Bioanal Chem. 2012;404(4):1165–79.

    CAS  PubMed  Google Scholar 

  19. Karaer A, Tuncay G, Mumcu A, Dogan B. Metabolomics analysis of follicular fluid in women with ovarian endometriosis undergoing in vitro fertilization. Syst Biol Reprod Med. 2019;65(1):39–47.

    CAS  PubMed  Google Scholar 

  20. Atiomo W, Daykin CA. Metabolomic biomarkers in women with polycystic ovary syndrome: a pilot study. MHR: Basic science of reproductive medicine. 2012;18(11):546–53.

    CAS  PubMed  Google Scholar 

  21. Hoffman JM, Lyu Y, Pletcher SD, Promislow DE. Proteomics and metabolomics in ageing research: from biomarkers to systems biology. Essays Biochem. 2017;61(3):379–88.

    PubMed  PubMed Central  Google Scholar 

  22. Piñero-Sagredo E, Nunes S, de los Santos MJ, Celda B, Esteve V. NMR metabolic profile of human follicular fluid. NMR Biomed 2010;23(5):485–495.

    PubMed  Google Scholar 

  23. Fan TWM. Metabolite profiling by one-and two-dimensional NMR analysis of complex mixtures. Prog Nucl Magn Reson Spectrosc. 1996;28(2):161–219.

    CAS  Google Scholar 

  24. Hashemitabar M, Bahmanzadeh M, Mostafaie A, Orazizadeh M, Farimani M, Nikbakht R. A proteomic analysis of human follicular fluid: comparison between younger and older women with normal FSH levels. Int J Mol Sci. 2014;15(10):17518–40.

    PubMed  PubMed Central  Google Scholar 

  25. Cordeiro FB, Montani DA, Pilau EJ, Gozzo FC, Fraietta R, Turco EGL. Ovarian environment aging: follicular fluid lipidomic and related metabolic pathways. J Assist Reprod Genet. 2018;35(8):1385–93.

    PubMed  PubMed Central  Google Scholar 

  26. Sutton-McDowall ML, Gilchrist RB, Thompson JG. The pivotal role of glucose metabolism in determining oocyte developmental competence. Reproduction. 2010;139(4):685–95.

    CAS  PubMed  Google Scholar 

  27. Cetica P, Pintos L, Dalvit G, Beconi M. Involvement of enzymes of amino acid metabolism and tricarboxylic acid cycle in bovine oocyte maturation in vitro. Reproduction. 2003;126(6):753–63.

    CAS  PubMed  Google Scholar 

  28. Brackett BG, Zuelke KA. Analysis of factors involved in the in vitro production of bovine embryos. Theriogenology. 1993;39(1):43–64.

    Google Scholar 

  29. Alvarez GM, Casiró S, Gutnisky C, Dalvit GC, Sutton-McDowall ML, Thompson JG, et al. Implications of glycolytic and pentose phosphate pathways on the oxidative status and active mitochondria of the porcine oocyte during IVM. Theriogenology. 2016;86(9):2096–106.

    CAS  PubMed  Google Scholar 

  30. Alvarez GM, Dalvit GC, Cetica PD. Influence of the cumulus and gonadotropins on the metabolic profile of porcine cumulus–oocyte complexes during in vitro maturation. Reprod Domest Anim. 2012;47(5):856–64.

    CAS  PubMed  Google Scholar 

  31. Cetica PD, Pintos LN, Dalvit GC, Beconi MT. Effect of lactate dehydrogenase activity and isoenzyme localization in bovine oocytes and utilization of oxidative substrates on in vitro maturation. Theriogenology. 1999;51(3):541–50.

    CAS  PubMed  Google Scholar 

  32. Monniaux D. Driving folliculogenesis by the oocyte-somatic cell dialog: lessons from genetic models. Theriogenology. 2016;86(1):41–53.

    CAS  PubMed  Google Scholar 

  33. Boland NI, Humpherson PG, Leese HJ, Gosden RG. Pattern of lactate production and steroidogenesis during growth and maturation of mouse ovarian follicles in vitro. Biol Reprod. 1993;48(4):798–806.

    CAS  PubMed  Google Scholar 

  34. Gull I, Geva E, Lerner-Geva L, Lessing JB, Wolman I, Amit A. Anaerobic glycolysis: the metabolism of the preovulatory human oocyte. European Journal of Obstetrics & Gynecology and Reproductive Biology. 1999;85(2):225–8.

    CAS  Google Scholar 

  35. Harlow CR, Winston RML, Margara RA, Hillier SG. Gonadotrophic control of human granulosa cell glycolysis. Hum Reprod. 1987;2(8):649–53.

    CAS  PubMed  Google Scholar 

  36. Sutton ML, Gilchrist RB, Thompson JG. Effects of in-vivo and in-vitro environments on the metabolism of the cumulus–oocyte complex and its influence on oocyte developmental capacity. Hum Reprod Update. 2003;9(1):35–48.

    CAS  PubMed  Google Scholar 

  37. Leese JH, Lenton EA. Glucose and lactate in human follicular fluid: concentrations and interrelationships. Hum Reprod. 1990;5:915–9.

    CAS  PubMed  Google Scholar 

  38. Pacella L, Zander-Fox DL, Armstrong DT, Lane M. Women with reduced ovarian reserve or advanced maternal age have an altered follicular environment. Fertil Steril. 2012;98(4):986–94.

    PubMed  Google Scholar 

  39. Jana SK, Dutta M, Joshi M, Srivastava S, Chakravarty B, Chaudhury K. 1H NMR based targeted metabolite profiling for understanding the complex relationship connecting oxidative stress with endometriosis. Biomed Res Int. 2013;2013.

  40. Shalgi R, Kraicer PF, Soferman N. Gases and electrolytes of human follicular fluid. Reproduction. 1972;28(3):335–40.

    CAS  Google Scholar 

  41. Dale B, Menezo Y, Cohen J, DiMatteo L, Wilding M. Intracellular pH regulation in the human oocyte. Human Reproduction (Oxford, England). 1998;13(4):964–70.

    CAS  Google Scholar 

  42. Broekmans FJ, Mol BW, Habbema JDF, te Velde ER. Performance of basal follicle-stimulating hormone in the prediction of poor ovarian response and failure to become pregnant after in vitro fertilization: a meta-analysis. Fertil Steril. 2003;79(5):1091–100.

    PubMed  Google Scholar 

  43. Broekmans FJ, Kwee J, Hendriks DJ, Mol BW, Lambalk CB. A systematic review of tests predicting ovarian reserve and IVF outcome. Hum Reprod Update. 2006;12(6):685–718.

    CAS  PubMed  Google Scholar 

  44. Jirge PR. Ovarian reserve tests. J Hum Reprod Sci. 2011;4(3):108–13.

    PubMed  PubMed Central  Google Scholar 

  45. Eyupoglu ND, Guzelce EC, Acikgoz A, Uyanik E, Bjørndal B, Berge RK, et al. Circulating gut microbiota metabolite trimethylamine N-oxide (TMAO) and oral contraceptive use in polycystic ovary syndrome. Clin Endocrinol. 2019;91(6):810–5.

    CAS  Google Scholar 

  46. Li P, Zhong C, Li S, Sun T, Huang H, Chen X, et al. Plasma concentration of trimethylamine-N-oxide and risk of gestational diabetes mellitus. Am J Clin Nutr. 2018;108(3):603–10.

    PubMed  PubMed Central  Google Scholar 

  47. Rexidamu M, Li H, Jin H, Huang J. Serum levels of trimethylamine-N-oxide in patients with ischemic stroke. Biosci Rep. 2019;39(6):BSR20190515.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Subramaniam S, Fletcher C. Trimethylamine N-oxide: breathe new life. Br J Pharmacol. 2018;175(8):1344–53.

    CAS  PubMed  Google Scholar 

  49. Griffin LE, Djuric Z, Angiletta CJ, Mitchell CM, Baugh ME, Davy KP, et al. A Mediterranean diet does not alter plasma trimethylamine N-oxide concentrations in healthy adults at risk for colon cancer. Food Funct. 2019;10(4):2138–47.

    CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the scientific research projects unit of Inonu University (Grant Number 2016/56).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Karaer.

Ethics declarations

All patients included in the study provided written informed consent, and the study protocol was permitted by the Clinical Research Ethics Committee (Number 2015/38).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dogan, B., Karaer, A., Tuncay, G. et al. High-resolution 1H-NMR spectroscopy indicates variations in metabolomics profile of follicular fluid from women with advanced maternal age. J Assist Reprod Genet 37, 321–330 (2020). https://doi.org/10.1007/s10815-020-01693-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-020-01693-x

Keywords

Navigation