Skip to main content
Log in

The potential impact of tumor suppressor genes on human gametogenesis: a case-control study

  • Gamete Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To study the incidence of tumor suppressor gene (TSG) mutations in men and women with impaired gametogenesis.

Methods

Gene association analyses were performed on blood samples in two distinct patient populations: males with idiopathic male infertility and females with unexplained diminished ovarian reserve (DOR). The male study group consisted of men with idiopathic azoospermia, oligozoospermia, asthenozoospermia, or teratozoospermia. Age-matched controls were men with normal semen analyses. The female study group consisted of women with unexplained DOR with anti-Müllerian hormone levels ≤ 1.1 ng/mL. Controls were age-matched women with normal ovarian reserve (> 1.1 ng/mL).

Results

Fifty-seven male cases (mean age = 38.4; mean sperm count = 15.7 ± 12.1; mean motility = 38.2 ± 24.7) and 37 age-matched controls (mean age = 38.0; mean sperm count = 89.6 ± 37.5; mean motility = 56.2 ± 14.3) were compared. Variants observed in CHD5 were found to be enriched in the study group (p = 0.000107). The incidence of CHD5 mutation c.*3198_*3199insT in the 3′UTR (rs538186680) was significantly higher in cases compared to controls (p = 0.0255). 72 DOR cases (mean age = 38.7; mean AMH = 0.5 ± 0.3; mean FSH = 11.7 ± 12.5) and 48 age-matched controls (mean age = 37.6; mean AMH = 4.1 ± 3.0; mean FSH = 7.1 ± 2.2) were compared. Mutations in CHD5 (c.-140A>C), RB1 (c.1422-18delT, rs70651121), and TP53 (c.376-161A>G, rs75821853) were found at significantly higher frequencies in DOR cases compared to controls (p ≤ 0.05). In addition, 363 variants detected in the DOR patients were not present in the control group.

Conclusion

Unexplained impaired gametogenesis in both males and females may be associated with genetic variation in TSGs. TSGs, which play cardinal roles in cell-cycle control, might also be critical for normal spermatogenesis and oogenesis. If validated in larger prospective studies, it is possible that TSGs provide an etiological basis for some patients with impaired gametogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gunes S, Al-Sadaan M, Agarwal A. Spermatogenesis, DNA damage and DNA repair mechanisms in male infertility. Reprod BioMed Online. 2015;31(3):309–19.

    Article  CAS  Google Scholar 

  2. Sanchez F, Smitz J. Molecular control of oogenesis. Biochim Biophys Acta Mol basis Dis. 2012;1822(12):1896–912.

    Article  CAS  Google Scholar 

  3. O’Shaughnessy PJ. Hormonal control of germ cell development and spermatogenesis. Semin Cell Dev Biol. 2014;29:55–65.

    Article  Google Scholar 

  4. Matzuk MM, Lamb DJ. Genetic dissection of mammalian fertility pathways. Nat Cell Biol. 2002;4:S33–40.

    Article  Google Scholar 

  5. Kalro BN. Impaired fertility caused by endocrine dysfunction in women. Endocrinol Metab Clin N Am. 2003;32(3):573–92.

    Article  CAS  Google Scholar 

  6. Harris SE, Kandil HMS, Niederberger CS. Endocrinopathies in male infertility. In: Sabanegh ES, editor. Male infertility: problems and solutions. Totowa, NJ: Humana Press; 2011. p. 47–55.

    Chapter  Google Scholar 

  7. Hixon ML, Gualberto A. The control of mitosis. Front Biosci. 2000;5:D50–7.

    Article  CAS  Google Scholar 

  8. Cohen PE, Pollack SE, Pollard JW. Genetic analysis of chromosome pairing, recombination, and cell cycle control during first meiotic prophase in mammals. Endocr Rev. 2006;27(4):398–426.

    Article  CAS  Google Scholar 

  9. MacQueen AJ, Hochwagen A. Checkpoint mechanisms: the puppet masters of meiotic prophase. Trends Cell Biol. 2011;21(7):393–400.

    Article  CAS  Google Scholar 

  10. Gorbsky GJ. The spindle checkpoint and chromosome segregation in meiosis. FEBS J. 2015;282(13):2471–87.

    Article  Google Scholar 

  11. Collins JK, Jones KT. DNA damage responses in mammalian oocytes. Reproduction. 2016;152(1):R15–22.

    Article  CAS  Google Scholar 

  12. Aitken RJ, Buckingham D, West K, Wu FC, Zikopoulos K, Richardson DW. Differential contribution of leucocytes and spermatozoa to the generation of reactive oxygen species in the ejaculates of oligozoospermic patients and fertile donors. J Reprod Fertil. 1992;94(2):451–62.

    Article  CAS  Google Scholar 

  13. Sharma R, Masaki J, Agarwal A. Sperm DNA fragmentation analysis using the TUNEL assay. In: Methods in molecular biology (Clifton, NJ). 2013. p. 121–136.

    Google Scholar 

  14. Tamburrino L, Marchiani S, Montoya M, Elia Marino F, Natali I, Cambi M, et al. Mechanisms and clinical correlates of sperm DNA damage. Asian J Androl. 2012;14(1):24–31.

    Article  CAS  Google Scholar 

  15. Meistrich ML, Mohapatra B, Shirley CR, Zhao M. Roles of transition nuclear proteins in spermiogenesis. Chromosoma. 2003;111(8):483–8.

    Article  Google Scholar 

  16. Rousseaux S, Boussouar F, Gaucher J, Reynoird N, Montellier E, Curtet S, et al. Molecular models for post-meiotic male genome reprogramming. Syst Biol Reprod Med. 2011;57(1–2):50–3.

    Article  Google Scholar 

  17. Sakkas D, Mariethoz E, Manicardi G, Bizzaro D, Bianchi PG, Bianchi U. Origin of DNA damage in ejaculated human spermatozoa. Rev Reprod. 1999;4(1):31–7.

    Article  CAS  Google Scholar 

  18. Sakkas D, Mariethoz E. St. John JC. Abnormal sperm parameters in humans are indicative of an abortive apoptotic mechanism linked to the Fas-mediated pathway. Exp Cell Res. 1999;251(2):350–5.

    Article  CAS  Google Scholar 

  19. Ménézo Y, Dale B, Cohen M. DNA damage and repair in human oocytes and embryos: a review. Zygote. 2010;18(4):357–65.

    Article  Google Scholar 

  20. Oktay K, Kim JY, Barad D, Babayev SN. Association of BRCA1 mutations with occult primary ovarian insufficiency: a possible explanation for the link between infertility and breast/ovarian cancer risks. J Clin Oncol. 2010;28(2):240–4.

    Article  CAS  Google Scholar 

  21. Wang ET, Pisarska MD, Bresee C, Chen Y-DI, Lester J, Afshar Y, et al. BRCA1 germline mutations may be associated with reduced ovarian reserve. Fertil Steril. 2014;102(6):1723–8.

    Article  CAS  Google Scholar 

  22. Phillips K-A, Collins IM, Milne RL, McLachlan SA, Friedlander M, Hickey M, et al. Anti-Müllerian hormone serum concentrations of women with germline BRCA1 or BRCA2 mutations. Hum Reprod. 2016;31(5):1126–32.

    Article  CAS  Google Scholar 

  23. Fraga LR, Dutra CG, Boquett JA, Vianna FSL, Gonçalves RO, Paskulin DD, et al. p53 signaling pathway polymorphisms associated to recurrent pregnancy loss. Mol Biol Rep. 2014;41(3):1871–7.

    Article  CAS  Google Scholar 

  24. Chan Y, Zhu B, Jiang H, Zhang J, Luo Y, Tang W. Influence of TP53 Codon 72 Polymorphism alone or in combination with HDM2 SNP309 on human infertility and IVF outcome. PLoS One. 2016;11(11):e0167147.

    Article  Google Scholar 

  25. Lu NX, Xia YK, Gu AH, Liang J, Wang SL, Wang XR. Lack of association between polymorphisms in p53 gene and spermatogenetic failure in a Chinese population. Andrologia. 2007;39(6):223–8.

    Article  CAS  Google Scholar 

  26. Chan Y, Jiang H, Ma L, Chen J, Li D, Meng Y, et al. No association of TP 53 codon 72 SNP with male infertility: a study in a Chinese population and a meta-analysis. Syst Biol Reprod Med. 2015;61(4):222–7.

    Article  Google Scholar 

  27. de Morais MP, Curado RF, e Silva KSF, Moura KKVO, Arruda JT. Male idiopathic infertility and the TP53 polymorphism in codon 72. Genet Mol Res 2016;15(4).

  28. World Health Organization, editor. WHO Laboratory Manual for the Examination and Processing of Human Semen. 5th ed. Geneva: WHO Press; 2010.

    Google Scholar 

  29. Cohen J, Chabbert-Buffet N, Darai E. Diminished ovarian reserve, premature ovarian failure, poor ovarian responder--a plea for universal definitions. J Assist Reprod Genet. 2015;32(12):1709–12.

    Article  CAS  Google Scholar 

  30. Ferraretti AP, La Marca A, Fauser BCJM, Tarlatzis B, Nargund G, Gianaroli L, et al. ESHRE consensus on the definition of “poor response” to ovarian stimulation for in vitro fertilization: the Bologna criteria. Hum Reprod. 2011;26(7):1616–24.

    Article  CAS  Google Scholar 

  31. R Core Team. R: A language and environment for statistical computing. 2017;

  32. Benjamini Y, Hochberg Y. Controlling the False discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995;57(1):289–300.

    Google Scholar 

  33. Schwartz D, Goldfinger N, Kam Z, Rotter V. p53 controls low DNA damage-dependent premeiotic checkpoint and facilitates DNA repair during spermatogenesis. Cell Growth Differ. 1999;10(10):665–75.

    CAS  PubMed  Google Scholar 

  34. Yang QE, Gwost I, Oatley MJ, Oatley JM. Retinoblastoma protein (RB1) controls fate determination in stem cells and progenitors of the mouse male germline. Biol Reprod. 2013;89(5):113.

    PubMed  PubMed Central  Google Scholar 

  35. Li W, Wu J, Kim S-Y, Zhao M, Hearn SA, Zhang MQ, et al. Chd5 orchestrates chromatin remodelling during sperm development. Nat Commun. 2014;5:3812.

    Article  CAS  Google Scholar 

  36. Zhuang T, Hess RA, Kolla V, Higashi M, Raabe TD, Brodeur GM. CHD5 is required for spermiogenesis and chromatin condensation. Mech Dev. 2014;131:35–46.

    Article  CAS  Google Scholar 

  37. Spiess A-N, Feig C, Schulze W, Chalmel F, Cappallo-Obermann H, Primig M, et al. Cross-platform gene expression signature of human spermatogenic failure reveals inflammatory-like response. Hum Reprod. 2007;22(11):2936–46.

    Article  CAS  Google Scholar 

  38. Agarwal V, Bell GW, Nam J-W, Bartel DP. Predicting effective microRNA target sites in mammalian mRNS. Elife. 2015;4.

  39. Mayr C. What are 3' UTRs doing? Cold Spring Harb Perspect Biol. 2018.

  40. De La Fuente R, Viveiros MM, Burns KH, Adashi EY, Matzuk MM, Eppig JJ. Major chromatin remodeling in the germinal vesicle (GV) of mammalian oocytes is dispensable for global transcriptional silencing but required for centromeric heterochromatin function. Dev Biol. 2004;275(2):447–58.

    Article  Google Scholar 

  41. Luciano AM, Franciosi F, Dieci C, Lodde V. Changes in large-scale chromatin structure and function during oogenesis: a journey in company with follicular cells. Anim Reprod Sci. 2014;149(1–2):3–10.

    Article  CAS  Google Scholar 

  42. Marfella CGA, Imbalzano AN. The Chd family of chromatin remodelers. Mutat Res. 2007;618(1–2):30–40.

    Article  CAS  Google Scholar 

  43. Bagchi A, Papazoglu C, Wu Y, Capurso D, Brodt M, Francis D, et al. CHD5 is a tumor suppressor at human 1p36. Cell. 2007;128(3):459–75.

    Article  CAS  Google Scholar 

  44. Li W, Mills AA. Packing for the journey: CHD5 remodels the genome. Cell Cycle. 2014;13(12):1833–4.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Research reported in this publication was supported by the National Cancer Institute of the National Institutes of Health under Award Numbers R01CA190997, R01CA190997 Supplement, R21OD018332 and P30CA045508. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Funding

This study was funded by Cooper Genomics LLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avner Hershlag.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hershlag, A., Peyser, A., Bristow, S.L. et al. The potential impact of tumor suppressor genes on human gametogenesis: a case-control study. J Assist Reprod Genet 37, 341–346 (2020). https://doi.org/10.1007/s10815-019-01634-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-019-01634-3

Keywords

Navigation