Skip to main content

Advertisement

Log in

SATB2 and NGR1: potential upstream regulatory factors in uterine leiomyomas

  • Reproductive Physiology and Disease
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

We attempted to identify the genes involved in the pathogenesis of uterine leiomyomas, under a hypothesis that the aberrant expression of upstream regulatory genes caused by aberrant DNA methylation is involved in the onset and development of uterine leiomyomas.

Methods

To find such genes, we compared genome-wide mRNA expression and DNA methylation in uterine leiomyomas and adjacent normal myometrium. Analysis of the data by Ingenuity Pathway Analysis software identified SATB2 which is known to be an epigenetic regulator, and NRG1 as candidate upstream regulatory genes. To infer the functions of these genes, human uterine smooth muscle cell lines overexpressing SATB2 or NRG1 genes were established (SATB2 or NRG1 lines), and their transcriptomes and pathways were analyzed.

Results

SATB2 and NRG1 were confirmed to be hypermethylated and upregulated in most uterine leiomyoma specimens (nine to 11 of the 11 cases). Among the established cell lines, morphological changes from spindle-like forms to fibroblast-like forms with elongated protrusions were observed in only the SATB2 line. Pathway analysis revealed that WNT/β-catenin and TGF-β signaling pathways which are related to the pathogenesis of uterine leiomyomas were activated in both SATB2 and NRG1 lines. In addition, signaling of growth factors including VEGF, PDGF, and IGF1, and retinoic acid signaling were activated in the SATB2 and NRG1 lines, respectively.

Conclusions

These results indicate that SATB2 and NRG1 overexpression induced many of the signaling pathways that are considered to be involved in the pathogenesis of uterine leiomyomas, suggesting that these genes have roles as upstream regulatory factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Stewart EA. Uterine fibroids. Lancet. 2001;357:293–8. https://doi.org/10.1016/S0140-6736(00)03622-9.

    Article  CAS  PubMed  Google Scholar 

  2. Bajekal N, Li TC. Fibroids, infertility and pregnancy wastage. Hum Reprod Update. 2000;6:614–20.

    Article  CAS  Google Scholar 

  3. Borahay MA, Al-Hendy A, Kilic GS, Boehning D. Signaling pathways in leiomyoma: understanding pathobiology and implications for therapy. Mol Med. 2015;21:242–56. https://doi.org/10.2119/molmed.2014.00053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ishikawa H, Ishi K, Serna VA, Kakazu R, Bulun SE, Kurita T. Progesterone is essential for maintenance and growth of uterine leiomyoma. Endocrinology. 2010;151:2433–42. https://doi.org/10.1210/en.2009-1225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ciebiera M, Włodarczyk M, Wrzosek M, Męczekalski B, Nowicka G, Łukaszuk K, et al. Role of transforming growth factor b in uterine fibroid biology. Int J Mol Sci. 2017;18:e 2435. https://doi.org/10.3390/ijms18112435.

    Article  CAS  Google Scholar 

  6. Peng L, Wen Y, Han Y, Wei A, Shi G, Mizuguchi M, et al. Expression of insulin-like growth factors (IGFs) and IGF signaling: molecular complexity in uterine leiomyomas. Fertil Steril. 2009;91:2664–75. https://doi.org/10.1016/j.fertnstert.2007.10.083.

    Article  CAS  PubMed  Google Scholar 

  7. Ren Y, Yin H, Tian R, Cui L, Zhu Y, Lin W, et al. Different effects of epidermal growth factor on smooth muscle cells derived from human myometrium and from leiomyoma. Fertil Steril. 2011;96:1015–20. https://doi.org/10.1016/j.fertnstert.2011.07.004.

    Article  CAS  PubMed  Google Scholar 

  8. Suo G, Jiang Y, Cowan B, Wang JY. Platelet-derived growth factor C is upregulated in human uterine fibroids and regulates uterine smooth muscle cell growth. Biol Reprod. 2009;81:749–58. https://doi.org/10.1095/biolreprod.109.076869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chang CC, Hsieh YY, Lin WH, Lin CS. Leiomyoma and vascular endothelial growth factor gene polymorphisms: a systematic review. Taiwan J Obstet Gynecol. 2010;49:247–53. https://doi.org/10.1016/S1028-4559(10)60056-3.

    Article  PubMed  Google Scholar 

  10. Helmke BM, Markowski DN, Müller MH, Sommer A, Müller J, Möller C, et al. HMGA proteins regulate the expression of FGF2 in uterine fibroids. Mol Hum Reprod. 2011;17:135–42. https://doi.org/10.1093/molehr/gaq083.

    Article  CAS  PubMed  Google Scholar 

  11. Zaitseva M, Vollenhoven BJ, Rogers PA. Retinoids regulate genes involved in retinoic acid synthesis and transport in human myometrial and fibroid smooth muscle cells. Hum Reprod. 2008;23:1076–86. https://doi.org/10.1093/humrep/den083.

    Article  CAS  PubMed  Google Scholar 

  12. Faerstein E, Szklo M, Rosenshein N. Risk factors for uterine leiomyoma: a practice-based case-control study. I. African-American heritage, reproductive history, body size, and smoking. Am J Epidemiol. 2001;153:1–10.

    Article  CAS  Google Scholar 

  13. Faerstein E, Szklo M, Rosenshein NB. Risk factors for uterine leiomyoma: a practice-based case-control study. II. Atherogenic risk factors and potential sources of uterine irritation. Am J Epidemiol. 2001;153:11–9.

    Article  CAS  Google Scholar 

  14. Chiaffarino F, Parazzini F, La Vecchia C, Chatenoud L, Di Cintio E, Marsico S. Diet and uterine myomas. Obstet Gynecol. 1999;94:395–8.

    CAS  PubMed  Google Scholar 

  15. Asada H, Yamagata Y, Taketani T, Matsuoka A, Tamura H, Hattori N, et al. Potential link between estrogen receptor-alpha gene hypomethylation and uterine fibroid formation. Mol Hum Reprod. 2008;14:539–45. https://doi.org/10.1093/molehr/gan045.

    Article  CAS  PubMed  Google Scholar 

  16. Yamagata Y, Maekawa R, Asada H, Taketani T, Tamura I, Tamura H, et al. Aberrant DNA methylation status in human uterine leiomyoma. Mol Hum Reprod. 2009;15:259–67. https://doi.org/10.1093/molehr/gap010.

    Article  CAS  PubMed  Google Scholar 

  17. Maekawa R, Yagi S, Ohgane J, Yamagata Y, Asada H, Tamura I, et al. Disease-dependent differently methylated regions (D-DMRs) of DNA are enriched on the X chromosome in uterine leiomyoma. J Reprod Dev. 2011;57:604–12.

    Article  CAS  Google Scholar 

  18. Maekawa R, Sato S, Yamagata Y, Asada H, Tamura I, Lee L, et al. Genome-wide DNA methylation analysis reveals a potential mechanism for the pathogenesis and development of uterine leiomyomas. PLoS One. 2013;8:e66632. https://doi.org/10.1371/journal.pone.0066632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Navarro A, Yin P, Monsivais D, Lin SM, Du P, Wei JJ, et al. Genome-wide DNA methylation indicates silencing of tumor suppressor genes in uterine leiomyoma. PLoS One. 2012;7:e33284. https://doi.org/10.1371/journal.pone.0033284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Miyata T, Sonoda K, Tomikawa J, Tayama C, Okamura K, Maehara K, et al. Genomic, Epigenomic, and transcriptomic profiling towards identifying omics features and specific biomarkers that distinguish uterine leiomyosarcoma and leiomyoma at molecular levels. Sarcoma. 2015;2015:412068. https://doi.org/10.1155/2015/412068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang Q, Mas A, Diamond MP, Al-Hendy A. The mechanism and function of epigenetics in uterine leiomyoma development. Reprod Sci. 2016;23:163–75. https://doi.org/10.1177/1933719115584449.

    Article  CAS  PubMed  Google Scholar 

  22. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76. https://doi.org/10.1016/j.cell.2006.07.024.

    Article  CAS  PubMed  Google Scholar 

  23. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Südhof TC, Wernig M. Direct conversion of fibroblasts to functional neurons by defined factors. Nature. 2010;463:1035–41. https://doi.org/10.1038/nature08797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tomasetti C, Marchionni L, Nowak MA, Parmigiani G, Vogelstein B. Only three driver gene mutations are required for the development of lung and colorectal cancers. Proc Natl Acad Sci U S A. 2015;112:118–23. https://doi.org/10.1073/pnas.1421839112.

    Article  CAS  PubMed  Google Scholar 

  25. Matsumura N, Mandai M, Miyanishi M, Fukuhara K, Baba T, Higuchi T, et al. Oncogenic property of acrogranin in human uterine leiomyosarcoma: direct evidence of genetic contribution in in vivo tumorigenesis. Clin Cancer Res. 2006;12:1402–11. https://doi.org/10.1158/1078-0432.CCR-05-2003.

    Article  CAS  PubMed  Google Scholar 

  26. Malik M, Catherino WH. Development and validation of a three-dimensional in vitro model for uterine leiomyoma and patient-matched myometrium. Fertil Steril. 2012;97:1287–93. https://doi.org/10.1016/j.fertnstert.2012.02.037.

    Article  PubMed  Google Scholar 

  27. Malik M, Britten J, Segars J, Catherino WH. Leiomyoma cells in 3-dimensional cultures demonstrate an attenuated response to fasudil, a rho-kinase inhibitor, when compared to 2-dimensional cultures. Reprod Sci. 2014;21:1126–38. https://doi.org/10.1177/1933719114545240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sato S, Maekawa R, Yamagata Y, Asada H, Tamura I, Lee L, et al. Potential mechanisms of aberrant DNA hypomethylation on the x chromosome in uterine leiomyomas. J Reprod Dev. 2014;60:47–54.

    Article  CAS  Google Scholar 

  29. Sato S, Maekawa R, Yamagata Y, Tamura I, Lee L, Okada M, et al. Identification of uterine leiomyoma-specific marker genes based on DNA methylation and their clinical application. Sci Rep. 2016;6:30652. https://doi.org/10.1038/srep30652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dobreva G, Chahrour M, Dautzenberg M, Chirivella L, Kanzler B, Fariñas I, et al. SATB2 is a multifunctional determinant of craniofacial patterning and osteoblast differentiation. Cell. 2006;125:971–86. https://doi.org/10.1016/j.cell.2006.05.012.

    Article  CAS  PubMed  Google Scholar 

  31. Gyorgy AB, Szemes M, de Juan Romero C, Tarabykin V, Agoston DV. SATB2 interacts with chromatin-remodeling molecules in differentiating cortical neurons. Eur J Neurosci. 2008;27:865–73. https://doi.org/10.1111/j.1460-9568.2008.06061.x.

    Article  PubMed  Google Scholar 

  32. Brocato J, Costa M. SATB1 and 2 in colorectal cancer. Carcinogenesis. 2015;36:186–91. https://doi.org/10.1093/carcin/bgu322.

    Article  CAS  PubMed  Google Scholar 

  33. Magnusson K, de Wit M, Brennan DJ, Johnson LB, McGee SF, Lundberg E, et al. SATB2 in combination with cytokeratin 20 identifies over 95% of all colorectal carcinomas. Am J Surg Pathol. 2011;35:937–48. https://doi.org/10.1097/PAS.0b013e31821c3dae.

    Article  PubMed  Google Scholar 

  34. Patani N, Jiang W, Mansel R, Newbold R, Mokbel K. The mRNA expression of SATB1 and SATB2 in human breast cancer. Cancer Cell Int. 2009;9:18. https://doi.org/10.1186/1475-2867-9-18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yu W, Ma Y, Shankar S, Srivastava RK. Role of SATB2 in human pancreatic cancer: implications in transformation and a promising biomarker. Oncotarget. 2016;7:57783–97. https://doi.org/10.18632/oncotarget.10860.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Steinthorsdottir V, Stefansson H, Ghosh S, Birgisdottir B, Bjornsdottir S, Fasquel AC, et al. Multiple novel transcription initiation sites for NRG1. Gene. 2004;342:97–105. https://doi.org/10.1016/j.gene.2004.07.029.

    Article  CAS  PubMed  Google Scholar 

  37. Mei L, Nave KA. Neuregulin-ERBB signaling in the nervous system and neuropsychiatric diseases. Neuron. 2014;83:27–49. https://doi.org/10.1016/j.neuron.2014.06.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Willem M. Proteolytic processing of Neuregulin-1. Brain Res Bull. 2016;126:178–82. https://doi.org/10.1016/j.brainresbull.2016.07.003.

    Article  CAS  PubMed  Google Scholar 

  39. Fernandez-Cuesta L, Thomas RK. Molecular pathways: targeting NRG1 fusions in lung cancer. Clin Cancer Res. 2015;21:1989–94. https://doi.org/10.1158/1078-0432.CCR-14-0854.

    Article  CAS  PubMed  Google Scholar 

  40. Kobayashi Y, Nikaido T, Zhai YL, Iinuma M, Shiozawa T, Shirota M, et al. In-vitro model of uterine leiomyomas: formation of ball-like aggregates. Hum Reprod. 1996;11:1724–30.

    Article  CAS  Google Scholar 

  41. Bertsch E, Qiang W, Zhang Q, Espona-Fiedler M, Druschitz S, Liu Y, et al. MED12 and HMGA2 mutations: two independent genetic events in uterine leiomyoma and leiomyosarcoma. Mod Pathol. 2014;27:1144–53. https://doi.org/10.1038/modpathol.2013.243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mehine M, Kaasinen E, Heinonen HR, Mäkinen N, Kämpjärvi K, Sarvilinna N, et al. Integrated data analysis reveals uterine leiomyoma subtypes with distinct driver pathways and biomarkers. Proc Natl Acad Sci U S A. 2016;113:1315–20. https://doi.org/10.1073/pnas.1518752113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ono M, Qiang W, Serna VA, Yin P, Coon JS 5th, Navarro A, et al. Role of stem cells in human uterine leiomyoma growth. PLoS One. 2012;7:e36935. https://doi.org/10.1371/journal.pone.0036935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Drs. Ikuo Konishi and Noriomi Matsumura (Kyoto University, and Kindai University, respectively) for providing us human immortalized uterine smooth muscle cells (hTERT UtSMCs). This work was supported in part by JSPS KAKENHI Grants 15K10720, 16K11142, 16K20191, 17K11240, 17K11239, and 16K11091 for Scientific Research from the Ministry of Education, Science, and Culture, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norihiro Sugino.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This study was approved by the Institutional Review Board of Yamaguchi University Graduate School of Medicine. Informed consent was obtained from the patients before the collection of any samples. All of the experiments handling human tissues were performed in accordance with Tenets of the Declaration of Helsinki.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 287 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, S., Maekawa, R., Tamura, I. et al. SATB2 and NGR1: potential upstream regulatory factors in uterine leiomyomas. J Assist Reprod Genet 36, 2385–2397 (2019). https://doi.org/10.1007/s10815-019-01582-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-019-01582-y

Keywords

Navigation