Skip to main content
Log in

Mode of conception does not affect fetal or placental growth parameters or ratios in early gestation or at delivery

  • Assisted Reproduction Technologies
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Ratio of fetal weight to placenta size varies by mode of conception (fertility treatments utilized) in animals. Our objective was to assess whether fertility treatments also affect these ratios in humans.

Methods

In this retrospective study, we assessed two cohorts: (a) early gestation cohort, women with singleton pregnancies who underwent first trimester vaginal ultrasound and (b) delivered cohort, women who delivered a live-born, singleton infant with placenta disposition to pathology. Crown rump length (CRL) and estimated placental volume (EPV) were calculated from first trimester ultrasound images using a validated computation. Infant birth weight (BW), pregnancy data, placental weight (PW), and placental histopathology were collected. Fetal growth-to-placental weight ratios (CRL/EPV; BW/PW) and placentas were compared by mode of conception. Linear regression was used to adjust for confounding variables.

Results

Two thousand one hundred seventy patients were included in the early gestation cohort and 1443 in the delivered cohort. Of the early gestation cohort (a), 85.4% were spontaneous conceptions, 5.9% Non-IVF Fertility (NIFT), and 8.7% IVF. In the delivered cohort (b), 92.4% were spontaneous, 2.1% NIFT, and 80 5.5% IVF. There were no significant differences between fetal growth-to-placental weight parameters, ratios, and neonatal birth measurements based on mode of conception. Placenta accreta was significantly higher in the patients receiving fertility treatments (1.2 versus 3.6%, p < 0.05).

Conclusions

Mode of conception does not appear to influence fetal growth-to-placental weight ratios throughout gestation. In addition, findings in animal models may not always translate into human studies of infertility treatment outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Centers for Disease Control and Prevention. Fertility Clinic Success Rates Report. Retrieved from https://www.cdcgov/art/artdata/indexhtml 2015.

  2. Schieve LA, Devine O, Boyle CA, Petrini JR, Warner L. Estimation of the contribution of non-assisted reproductive technology ovulation stimulation fertility treatments to US singleton and multiple births. Am J Epidemiol. 2009;170:1396–407.

    Article  PubMed  Google Scholar 

  3. Klemetti R, Gissler M, Sevon T, Koivurova S, Ritvanen A, Hemminki E. Children born after assisted fertilization have an increased rate of major congenital anomalies. Fertil Steril. 2005;84(5):1300–7. https://doi.org/10.1016/j.fertnstert.2005.03.085.

    Article  PubMed  Google Scholar 

  4. Shevell T, Malone FD, Vidaver J, Porter TF, Luthy DA, Comstock CH, et al. Assisted reproductive technology and pregnancy outcome. Obstet Gynecol. 2005;106(5 Pt 1):1039–45. https://doi.org/10.1097/01.AOG.0000183593.24583.7c.

    Article  PubMed  Google Scholar 

  5. Jackson RA, Gibson KA, Wu YW, Croughan MS. Perinatal outcomes in singletons following in vitro fertilization: a meta-analysis. Obstet Gynecol. 2004;103(3):551–63. https://doi.org/10.1097/01.aog.0000114989.84822.51.

    Article  PubMed  Google Scholar 

  6. Rimm AA, Katayama AC, Diaz M, Katayama KP. A meta-analysis of controlled studies comparing major malformation rates in IVF and ICSI infants with naturally conceived children. J Assist Reprod Genet. 2004;21(12):437–43.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hansen M, Kurinczuk JJ, Bower C, Webb S. The risk of major birth defects after intracytoplasmic sperm injection and in vitro fertilization. N Engl J Med. 2002;346(10):725–30. https://doi.org/10.1056/NEJMoa010035.

    Article  PubMed  Google Scholar 

  8. Stromberg B, Dahlquist G, Ericson A, Finnstrom O, Koster M, Stjernqvist K. Neurological sequelae in children born after in-vitro fertilisation: a population-based study. Lancet. 2002;359(9305):461–5. https://doi.org/10.1016/S0140-6736(02)07674-2.

    Article  PubMed  CAS  Google Scholar 

  9. Schieve LA, Meikle SF, Ferre C, Peterson HB, Jeng G, Wilcox LS. Low and very low birth weight in infants conceived with use of assisted reproductive technology. N Engl J Med. 2002;346(10):731–7. https://doi.org/10.1056/NEJMoa010806.

    Article  PubMed  Google Scholar 

  10. Verlaenen H, Cammu H, Derde MP, Amy JJ. Singleton pregnancy after in vitro fertilization: expectations and outcome. Obstet Gynecol. 1995;86(6):906–10. https://doi.org/10.1016/0029-7844(95)00322-I.

    Article  PubMed  CAS  Google Scholar 

  11. Kroener L, Wang ET, Pisarska MD. Predisposing factors to abnormal first trimester placentation and the impact on fetal outcomes. Semin Reprod Med. 2016;34(1):27–35.

    Article  PubMed  Google Scholar 

  12. Delle Piane L, Lin W, Liu X, Donjacour A, Minasi P, Revelli A, et al. Effect of the method of conception and embryo transfer procedure on mid-gestation placenta and fetal development in an IVF mouse model. Hum Reprod. 2010;25:2039–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Bloise E, Lin W, Liu X, Simbulan R, Kolahi KS, Petraglia F, et al. Impaired placental nutrient transport in mice generated by in vitro fertilization. Endocrinology. 2012;153:3457–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Feuer SK, Liu X, Donjacour A, Lin W, Simbulan RK, Giritharan G, et al. Use of a mouse in vitro fertilization model to understand the developmental origins of health and disease hypothesis. Endocrinology. 2014;155:1956–69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Johnson MR, Riddle AF, Grudzinskas JG, Sharma V, Collins WP, Nicolaides KH. Reduced circulating placental protein concentrations during the first trimester are associated with preterm labour and low birth weight. Hum Reprod. 1993;8:1942–7.

    Article  PubMed  CAS  Google Scholar 

  16. Plasencia W, Akolekar R, Dagklis T, Veduta A, Nicolaides KH. Placental volume at 11-13 weeks’ gestation in the prediction of birth weight percentile. Fetal Diagn Ther. 2011;30:23–8.

    Article  PubMed  Google Scholar 

  17. David AL, Jauniaux E. Ultrasound and endocrinological markers of first trimester placentation and subsequent fetal size. Placenta. 2016;40:29–33.

    Article  PubMed  CAS  Google Scholar 

  18. Hafner E, Metzenbauer M, Stumpflen I, Waldhor T. Measurement of placental bed vascularization in the first trimester, using 3D-power-Doppler, for the detection of pregnancies at-risk for fetal and maternal complications. Placenta. 2013;34:892–8.

    Article  PubMed  CAS  Google Scholar 

  19. Suri S, Muttukrishna S, Jauniaux E. 2D-ultrasound and endocrinologic evaluation of placentation in early pregnancy and its relationship to fetal birthweight in normal pregnancies and pre-eclampsia. Placenta. 2013;34:745–50.

    Article  PubMed  CAS  Google Scholar 

  20. Hafner E, Metzenbauer M, Stumpflen I, Waldhor T, Philipp K. First trimester placental and myometrial blood perfusion measured by 3D power Doppler in normal and unfavourable outcome pregnancies. Placenta. 2010;31:756–63.

    Article  PubMed  CAS  Google Scholar 

  21. Savasi VM, Mandia L, Laoreti A, Ghisoni L, Duca P, Cetin I. First trimester placental markers in oocyte donation pregnancies. Placenta. 2015;36(8):921–5.

    Article  PubMed  CAS  Google Scholar 

  22. de Waal E, Vrooman LA, Fischer E, Ord T, Mainigi MA, Coutifaris C, et al. The cumulative effect of assisted reproduction procedures on placental development and epigenetic perturbations in a mouse model. Hum Mol Genet. 2015;24(24):6975–85.

    PubMed  PubMed Central  Google Scholar 

  23. Churchill SJWE, Akhlaghpour M, Goldstein EH, Eschevarria D, Greene N, Macer M, et al. Mode of conception does not appear to affect placental volume in the first trimester. Fertil Steril. 2017;107(6):1341–7. e1

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rifouna MS, Reus AD, Koning AH, van der Spek PJ, Exalto N, Steegers EA, et al. First trimester trophoblast and placental bed vascular volume measurements in IVF or IVF/ICSI pregnancies. Hum Reprod. 2014;29:2644–9.

    Article  PubMed  CAS  Google Scholar 

  25. Jauniaux E, Englert Y, Vanesse M, Hiden M, Wilkin P. Pathologic features of placentas from singleton pregnancies obtained by in vitro fertilization and embryo transfer. Obstet Gynecol. 1990;76(1):61–4.

    PubMed  CAS  Google Scholar 

  26. Gavriil P, Jauniaux E, Leroy F. Pathologic examination of placentas from singleton and twin pregnancies obtained after in vitro fertilization and embryo transfer. Pediatr Pathol. 1993;13(4):453–62.

    Article  PubMed  CAS  Google Scholar 

  27. Poon LC, Karagiannis G, Leal A, Romero XC, Nicolaides KH. Hypertensive disorders in pregnancy: screening by uterine artery Doppler imaging and blood pressure at 11–13 weeks. Ultrasound Obstet Gynecol. 2009;34(5):497–502.

    Article  PubMed  CAS  Google Scholar 

  28. Schuchter K, Metzenbauer M, Hafner E, Philipp K. Uterine artery Doppler and placental volume in the first trimester in the prediction of pregnancy complications. Ultrasound Obstet Gynecol. 2001;18(6):590–2.

    Article  PubMed  CAS  Google Scholar 

  29. Reus AD, El-Harbachi H, Rousian M, Willemsen SP, Steegers-Theunissen RP, Steegers EA, et al. Early first-trimester trophoblast volume in pregnancies that result in live birth or miscarriage. Ultrasound Obstet Gynecol. 2013;42(5):577–84.

    Article  PubMed  CAS  Google Scholar 

  30. Azpurua H, Funai EF, Coraluzzi LM, Doherty LF, Sasson IE, Kliman M, et al. Determination of placental weight using two-dimensional sonography and volumetric mathematic modeling. Am J Perinatol. 2010;27:151–5.

    Article  PubMed  Google Scholar 

  31. Schwartz N, Sammel MD, Leite R, Parry S. First-trimester placental ultrasound and maternal serum markers as predictors of small-for-gestational-age infants. Am J Obstet Gynecol. 2014;211:253.e1–8.

    Article  CAS  Google Scholar 

  32. Schwartz N, Wang E, Parry S. Two-dimensional sonographic placental measurements in the prediction of small-for-gestational-age infants. Ultrasound Obstet Gynecol. 2012;40:674–9.

    Article  PubMed  CAS  Google Scholar 

  33. Hafner E, Philipp T, Schuchter K, Dillinger-Paller B, Philipp K, Bauer P. Second-trimester measurements of placental volume by three-dimensional ultrasound to predict small-for-gestational-age infants. Ultrasound Obstet Gynecol. 1998;12:97–102.

    Article  PubMed  CAS  Google Scholar 

  34. Pandey S, Shetty A, Hamilton M, Bhattacharya S, Maheshwari A. Obstetric and perinatal outcomes in singleton pregnancies resulting from IVF/ICSI: a systematic review and meta-analysis. Hum Reprod Update. 2012;18(5):485–503.

    Article  PubMed  Google Scholar 

  35. McDonald SD, Han Z, Mulla S, Murphy KE, Beyene J, Ohlsson A. Knowledge synthesis group. Preterm birth and low birth weight among in vitro fertilization singletons: a systematic review and meta-analyses. Eur J Obstet Gynecol Reprod Biol. 2009;46(2):138–48.

    Article  Google Scholar 

  36. Alexander GR, Himes JH, Kaufman RB, Mor J, Kogan M. A United States national reference for fetal growth. Obstet Gynecol. 1996;87(2):163–8.

    Article  PubMed  CAS  Google Scholar 

  37. Williams LA, Evans SF, Newnham JP. Prospective cohort study of factors influencing the relative weights of the placenta and the newborn infant. BMJ. 1997;314(7098):1864–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Bukowski R, Hansen NI, Pinar H, Willinger M, Reddy UM, Parker CB, et al. Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) stillbirth collaborative research network (SCRN). Altered fetal growth, placental abnormalities, and stillbirth. PLoS One. 2017;12(8):e0182874.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Chang YL, Chang SD, Chao AS, Hsieh PC, Wang CN, Tseng LH. The individual fetal weight/estimated placental weight ratios in monochorionic twins with selective growth restriction. Prenat Diagn. 2008;28(3):217–21.

    Article  PubMed  Google Scholar 

  40. Souza MA, de Lourdes Brizot M, Biancolin SE, Schultz R, de Carvalho MHB, Francisco RPV, et al. Placental weight and birth weight to placental weight ratio in monochorionic and dichorionic growth-restricted and non-growth-restricted twins. Clinics (Sao Paulo). 2017;72(5):265–71.

    Article  Google Scholar 

  41. Gloria-Bottini F, Neri A, Coppeta L, Magrini A, Bottini E. Correlation between birth weight and placental weight in healthy and diabetic puerperae. Taiwan J Obstet Gynecol. 2016;55(5):697–9.

    Article  PubMed  Google Scholar 

  42. Risnes KR, Romundstad PR, Nilsen TI, Eskild A, Vatten LJ. Placental weight relative to birth weight and long-term cardiovascular mortality: findings from a cohort of 31,307 men and women. Am J Epidemiol. 2009;170:622e31.

    Article  Google Scholar 

  43. Shehata F, Levin I, Shrim A, Ata B, Weisz B, Gamzu R, et al. Placenta/birth weight ratio and perinatal outcome: a retrospective cohort analysis. BJOG. 2011;118(6):741–7.

    Article  PubMed  CAS  Google Scholar 

  44. van Uitert EM, van der Elst-Otte N, Wilbers JJ, Exalto N, Willemsen SP, Eilers PH, et al. Periconception maternal characteristics and embryonic growth trajectories: the Rotterdam Predict study. Hum Reprod. 2013;28(12):3188–96.

    Article  PubMed  CAS  Google Scholar 

  45. Esh-Broder E, Ariel I, Abas-Bashir N, Bdolah Y, Celnikier DH. Placenta accreta is associated with IVF pregnancies: a retrospective chart review. BJOG. 2011;118:1084–9.

    Article  PubMed  CAS  Google Scholar 

  46. Fitzpatrick KE, Sellers S, Spark P, Kurinczuk JJ, Brocklehurst P, Knight M. Incidence and risk factors for placenta accreta/increta/percreta in the UK: a national case-control study. PLoS One. 2012;7:e52893.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Hayashi M, Nakai A, Satoh S, Matsuda Y. Adverse obstetric and perinatal outcomes of singleton pregnancies may be related to maternal factors associated with infertility rather than the type of assisted reproductive technology procedure used. Fertil Steril. 2012;98:922–8.

    Article  PubMed  Google Scholar 

  48. Ishishara O, Araki R, Kuwahara A, Itakura A, Saito H, Adamson G. Impact of frozen-thawed single-blastocyst transfer on maternal and neonatal outcome: an analysis of 277,042 single-embryo transfer cycles from 2008 to 2010 in Japan. Fertil Steril. 2014;101:128–33.

    Article  Google Scholar 

  49. Kaser DJ, Melamed A, Bormann CL, Myers DE, Missmer SA, Walsh BW, et al. Cryopreserved embryo transfer is an independent risk factor for placenta accreta. Fertil Steril. 2015;103(5):1176–84.e2.

    Article  PubMed  Google Scholar 

Download references

Funding

This study was funded through the National Institutes of Health (R01HD074368).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margareta D. Pisarska.

Ethics declarations

The Institutional Review Board of Cedars-Sinai Medical Center in Los Angeles approved the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sundheimer, L.W., Chan, J.L., Buttle, R. et al. Mode of conception does not affect fetal or placental growth parameters or ratios in early gestation or at delivery. J Assist Reprod Genet 35, 1039–1046 (2018). https://doi.org/10.1007/s10815-018-1176-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-018-1176-7

Keywords

Navigation