Skip to main content
Log in

Oxidative stress level in fresh ejaculate is not related to semen parameters or to pregnancy rates in cycles with donor oocytes

  • Reproductive Physiology and Disease
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

The purpose of the present study is to study the relationship between oxidative stress (OS) in semen, semen characteristics, and reproductive outcomes in oocyte donation intracytoplasmic sperm injection (ICSI) cycles.

Methods

OS was measured in 132 semen samples.

Results

OS levels were as follows: very high (1.5 %), high (43.2 %), low (30.3 %), and very low (25.0 %). Overall seminal parameters were as follows: volume (ml) = 4.2 (SD 2.1), concentration (millions/ml) = 61.6 (SD 59.8), motility (a+b%) = 47.4 (SD 18.0), and normal spermatozoa (%) = 8.2 (SD 5.1). Of the 101 cycles that reached embryo transfer, 55.4 % evolved in biochemical, 46.5 % in clinical, and 43.6 % in ongoing pregnancy. OS level does not relate to seminal parameters, fertilization rate, or pregnancy outcomes.

Conclusions

OS testing by nitro blue tetrazolium (NBT) in fresh ejaculate might not be useful for all patients. Reproductive results with young oocytes and ICSI do not seem to be affected by OS-level semen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wright C, Milne S, Leeson H. Sperm DNA damage caused by oxidative stress: modifiable clinical, lifestyle and nutritional factors in male infertility. Reprod Biomed Online. 2014;28(6):684–703. doi:10.1016/j.rbmo.2014.02.004.

    Article  CAS  PubMed  Google Scholar 

  2. Aitken RJ, Clarkson JS. Cellular basis of defective sperm function and its association with the genesis of reactive oxygen species by human spermatozoa. J Reprod Fertil. 1987;81(2):459–69.

    Article  CAS  PubMed  Google Scholar 

  3. Alvarez JG, Touchstone JC, Blasco L, Storey BT. Spontaneous lipid peroxidation and production of hydrogen peroxide and superoxide in human spermatozoa. Superoxide dismutase as major enzyme protectant against oxygen toxicity. J Androl. 1987;8(5):338–48.

    Article  CAS  PubMed  Google Scholar 

  4. de Lamirande E, O’Flaherty C. Sperm activation: role of reactive oxygen species and kinases. Biochim Biophys Acta. 2008;1784(1):106–15. doi:10.1016/j.bbapap.2007.08.024.

    Article  PubMed  Google Scholar 

  5. Aitken RJ, Paterson M, Fisher H, Buckingham DW, van Duin M. Redox regulation of tyrosine phosphorylation in human spermatozoa and its role in the control of human sperm function. J Cell Sci. 1995;108(Pt 5):2017–25.

    CAS  PubMed  Google Scholar 

  6. Oehninger S, Blackmore P, Mahony M, Hodgen G. Effects of hydrogen peroxide on human spermatozoa. J Assist Reprod Genet. 1995;12(1):41–7.

    Article  CAS  PubMed  Google Scholar 

  7. Tremellen K. Oxidative stress and male infertility—a clinical perspective. Hum Reprod Update. 2008;14(3):243–58. doi:10.1093/humupd/dmn004.

    Article  CAS  PubMed  Google Scholar 

  8. Shamsi MB, Kumar R, Bhatt A, Bamezai RN, Kumar R, Gupta NP, et al. Mitochondrial DNA mutations in etiopathogenesis of male infertility. Indian J Urol : IJU : J Urol Soc India. 2008;24(2):150–4.

    Article  Google Scholar 

  9. Aitken RJ, De Iuliis GN. On the possible origins of DNA damage in human spermatozoa. Mol Hum Reprod. 2010;16(1):3–13. doi:10.1093/molehr/gap059.

    Article  CAS  PubMed  Google Scholar 

  10. Ribas-Maynou J, Garcia-Peiro A, Fernandez-Encinas A, Amengual MJ, Prada E, Cortes P, et al. Double stranded sperm DNA breaks, measured by Comet assay, are associated with unexplained recurrent miscarriage in couples without a female factor. PLoS One. 2012;7(9):e44679. doi:10.1371/journal.pone.0044679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Leduc F, Nkoma GB, Boissonneault G. Spermiogenesis and DNA repair: a possible etiology of human infertility and genetic disorders. Syst Biol Reprod Med. 2008;54(1):3–10. doi:10.1080/19396360701876823.

    Article  CAS  PubMed  Google Scholar 

  12. Marcon L, Boissonneault G. Transient DNA strand breaks during mouse and human spermiogenesis new insights in stage specificity and link to chromatin remodeling. Biol Reprod. 2004;70(4):910–8. doi:10.1095/biolreprod.103.022541.

    Article  CAS  PubMed  Google Scholar 

  13. Ribas-Maynou J, Fernandez-Encinas A, Garcia-Peiro A, Prada E, Abad C, Amengual MJ, et al. Human semen cryopreservation: a sperm DNA fragmentation study with alkaline and neutral Comet assay. Andrology. 2014;2(1):83–7. doi:10.1111/j.2047-2927.2013.00158.x.

    Article  CAS  PubMed  Google Scholar 

  14. Marchetti F, Essers J, Kanaar R, Wyrobek AJ. Disruption of maternal DNA repair increases sperm-derived chromosomal aberrations. Proc Natl Acad Sci U S A. 2007;104(45):17725–9. doi:10.1073/pnas.0705257104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gonzalez-Marin C, Gosalvez J, Roy R. Types, causes, detection and repair of DNA fragmentation in animal and human sperm cells. Int J Mol Sci. 2012;13(11):14026–52. doi:10.3390/ijms131114026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Noblanc A, Damon-Soubeyrand C, Karrich B, Henry-Berger J, Cadet R, Saez F, et al. DNA oxidative damage in mammalian spermatozoa: where and why is the male nucleus affected? Free Radic Biol Med. 2013;65:719–23. doi:10.1016/j.freeradbiomed.2013.07.044.

    Article  CAS  PubMed  Google Scholar 

  17. Hammoud SS, Nix DA, Zhang H, Purwar J, Carrell DT, Cairns BR. Distinctive chromatin in human sperm packages genes for embryo development. Nature. 2009;460(7254):473–8. doi:10.1038/nature08162.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hammadeh ME, Al Hasani S, Rosenbaum P, Schmidt W, Fischer Hammadeh C. Reactive oxygen species, total antioxidant concentration of seminal plasma and their effect on sperm parameters and outcome of IVF/ICSI patients. Arch Gynecol Obstet. 2008;277(6):515–26. doi:10.1007/s00404-007-0507-1.

    Article  CAS  PubMed  Google Scholar 

  19. Yeung CH, De Geyter C, De Geyter M, Nieschlag E. Production of reactive oxygen species by and hydrogen peroxide scavenging activity of spermatozoa in an IVF program. J Assist Reprod Genet. 1996;13(6):495–500.

    Article  CAS  PubMed  Google Scholar 

  20. Zorn B, Vidmar G, Meden-Vrtovec H. Seminal reactive oxygen species as predictors of fertilization, embryo quality and pregnancy rates after conventional in vitro fertilization and intracytoplasmic sperm injection. Int J Androl. 2003;26(5):279–85.

    Article  CAS  PubMed  Google Scholar 

  21. WHO. Laboratory manual for the examination and processing of human semen. 5th ed. Geneva: World Health Organization; 2010. 2010.

    Google Scholar 

  22. Coroleu B, Barri PN, Carreras O, Belil I, Buxaderas R, Veiga A, et al. Effect of using an echogenic catheter for ultrasound-guided embryo transfer in an IVF programme: a prospective, randomized, controlled study. Hum Reprod. 2006;21(7):1809–15. doi:10.1093/humrep/del045.

    Article  PubMed  Google Scholar 

  23. Tunc O, Thompson J, Tremellen K. Development of the NBT assay as a marker of sperm oxidative stress. Int J Androl. 2010;33(1):13–21. doi:10.1111/j.1365-2605.2008.00941.x.

    Article  CAS  PubMed  Google Scholar 

  24. Morielli T, O’Flaherty C. Oxidative stress impairs function and increases redox protein modifications in human spermatozoa. Reproduction. 2015;149(1):113–23. doi:10.1530/REP-14-0240.

    Article  PubMed  Google Scholar 

  25. Hosseinzadeh Colagar A, Karimi F, Jorsaraei SG. Correlation of sperm parameters with semen lipid peroxidation and total antioxidants levels in astheno- and oligoasheno-teratospermic men. Iran Red Crescent Med J. 2013;15(9):780–5. doi:10.5812/ircmj.6409.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Agarwal A, Tvrda E, Sharma R. Relationship amongst teratozoospermia, seminal oxidative stress and male infertility. Reprod Biol Endocrinol : RB&E. 2014;12:45. doi:10.1186/1477-7827-12-45.

    Article  Google Scholar 

  27. Aitken RJ, Finnie JM, Muscio L, Whiting S, Connaughton HS, Kuczera L, et al. Potential importance of transition metals in the induction of DNA damage by sperm preparation media. Hum Reprod. 2014;29(10):2136–47. doi:10.1093/humrep/deu204.

    Article  CAS  PubMed  Google Scholar 

  28. Badouard C, Menezo Y, Panteix G, Ravanat JL, Douki T, Cadet J, et al. Determination of new types of DNA lesions in human sperm. Zygote. 2008;16(1):9–13. doi:10.1017/S0967199407004340.

    Article  CAS  PubMed  Google Scholar 

  29. Ozmen B, Koutlaki N, Youssry M, Diedrich K, Al-Hasani S. DNA damage of human spermatozoa in assisted reproduction: origins, diagnosis, impacts and safety. Reprod Biomed Online. 2007;14(3):384–95.

    Article  CAS  PubMed  Google Scholar 

  30. Aitken RJ, Gordon E, Harkiss D, Twigg JP, Milne P, Jennings Z, et al. Relative impact of oxidative stress on the functional competence and genomic integrity of human spermatozoa. Biol Reprod. 1998;59(5):1037–46.

    Article  CAS  PubMed  Google Scholar 

  31. Gandini L, Lombardo F, Paoli D, Caruso F, Eleuteri P, Leter G, et al. Full-term pregnancies achieved with ICSI despite high levels of sperm chromatin damage. Hum Reprod. 2004;19(6):1409–17. doi:10.1093/humrep/deh233.

    Article  CAS  PubMed  Google Scholar 

  32. Sakkas D, Alvarez JG. Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis. Fertil Steril. 2010;93(4):1027–36. doi:10.1016/j.fertnstert.2009.10.046.

    Article  CAS  PubMed  Google Scholar 

  33. Seli E, Gardner DK, Schoolcraft WB, Moffatt O, Sakkas D. Extent of nuclear DNA damage in ejaculated spermatozoa impacts on blastocyst development after in vitro fertilization. Fertil Steril. 2004;82(2):378–83. doi:10.1016/j.fertnstert.2003.12.039.

    Article  PubMed  Google Scholar 

  34. Meseguer M, Martinez-Conejero JA, O’Connor JE, Pellicer A, Remohi J, Garrido N. The significance of sperm DNA oxidation in embryo development and reproductive outcome in an oocyte donation program: a new model to study a male infertility prognostic factor. Fertil Steril. 2008;89(5):1191–9. doi:10.1016/j.fertnstert.2007.05.005.

    Article  PubMed  Google Scholar 

  35. Loft S, Kold-Jensen T, Hjollund NH, Giwercman A, Gyllemborg J, Ernst E, et al. Oxidative DNA damage in human sperm influences time to pregnancy. Hum Reprod. 2003;18(6):1265–72.

    Article  CAS  PubMed  Google Scholar 

  36. Esbert M, Pacheco A, Vidal F, Florensa M, Riqueros M, Ballesteros A, et al. Impact of sperm DNA fragmentation on the outcome of IVF with own or donated oocytes. Reprod Biomed Online. 2011;23(6):704–10. doi:10.1016/j.rbmo.2011.07.010.

    Article  CAS  PubMed  Google Scholar 

  37. Ko EY, Sabanegh Jr ES, Agarwal A. Male infertility testing: reactive oxygen species and antioxidant capacity. Fertil Steril. 2014;102(6):1518–27. doi:10.1016/j.fertnstert.2014.10.020.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Vassena.

Additional information

Capsule

Semen oxidative stress was measured in 132 patients’ ejaculates by nitro blue tetrazolium testing before performing ICSI with donor oocytes. The measured level did not correlate with either seminal parameters or reproductive outcomes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pujol, A., Obradors, A., Esteo, E. et al. Oxidative stress level in fresh ejaculate is not related to semen parameters or to pregnancy rates in cycles with donor oocytes. J Assist Reprod Genet 33, 529–534 (2016). https://doi.org/10.1007/s10815-016-0660-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-016-0660-1

Keywords

Navigation