Skip to main content
Log in

Evidence of an age-related correlation of ovarian reserve and FMR1 repeat number among women with “normal” CGG repeat status

  • Genetics
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

An Erratum to this article was published on 16 November 2015

Abstract

Purpose

The objective of this analysis is to examine the relationship between Fragile X Mental Retardation 1 gene (FMR1) cytosine-guanine-guanine (CGG) repeat number and ovarian reserve, with a particular focus exclusively on the range of CGG repeat number below the premutation (PM) range (<55 CGG repeats).

Methods

Our study included female patients who underwent assessment of FMR1 CGG repeat number and serum anti-Mullerian hormone (AMH) in 2009–2014. To examine the association between FMR1 repeat number and serum AMH, we created three summary measures of CGG repeat number for the two alleles—“Sum,” “Max,” and “Gap” (absolute difference). Using multivariable regression models, controlling for age, we then analyzed the impact of these summary measures on AMH.

Results

A total of 566 patients were included in our study. Using multivariable regression models, we found that the relationship between CGG repeat number and AMH differed depending on age. Specifically, in younger women, AMH increased by 7–8 % (Sum p < 0.01, Max p = 0.04) for every 1 unit increase in CGG repeat number. In contrast, starting at age 40, there was a 3 to 5 % decline in AMH for every 1 unit increase in CGG repeat number (Sum p < 0.01, Max p = 0.04).

Conclusions

This is the first study to report a statistically significant correlation of ovarian reserve and CGG repeat number in women with <55 CGG repeats. Although these women are generally considered to have a normal phenotype, our data suggest that increasing CGG repeat number within this normal range is associated with a more rapid decline in ovarian reserve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sullivan SD, Welt C, Sherman S. FMR1 and the continuum of primary ovarian insufficiency. Semin Reprod Med. 2011;29(4):299–307. doi:10.1055/s-0031-1280915.

    Article  PubMed  Google Scholar 

  2. ACOG. Committee opinion no. 469: carrier screening for fragile X syndrome. Obstet Gynecol. 2010;116(4):1008–10. doi:10.1097/AOG.0b013e3181fae884.

    Article  Google Scholar 

  3. Bretherick KL, Fluker MR, Robinson WP. FMR1 repeat sizes in the gray zone and high end of the normal range are associated with premature ovarian failure. Hum Genet. 2005;117(4):376–82. doi:10.1007/s00439-005-1326-8.

    Article  CAS  PubMed  Google Scholar 

  4. Sullivan AK, Marcus M, Epstein MP, Allen EG, Anido AE, Paquin JJ, et al. Association of FMR1 repeat size with ovarian dysfunction. Hum Reprod. 2005;20(2):402–12. doi:10.1093/humrep/deh635.

    Article  CAS  PubMed  Google Scholar 

  5. Allingham-Hawkins DJ, Babul-Hirji R, Chitayat D, Holden JJ, Yang KT, Lee C, et al. Fragile X premutation is a significant risk factor for premature ovarian failure: the International Collaborative POF in Fragile X study—preliminary data. Am J Med Genet. 1999;83(4):322–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Sherman SL. Premature ovarian failure in the fragile X syndrome. Am J Med Genet. 2000;97(3):189–94. doi:10.1002/1096-8628(200023)97:3<189::AID-AJMG1036>3.0.CO;2-J.

    Article  CAS  PubMed  Google Scholar 

  7. Karimov CB, Moragianni VA, Cronister A, Srouji S, Petrozza J, Racowsky C, et al. Increased frequency of occult fragile X-associated primary ovarian insufficiency in infertile women with evidence of impaired ovarian function. Hum Reprod. 2011;26(8):2077–83. doi:10.1093/humrep/der168.

    Article  CAS  PubMed  Google Scholar 

  8. Bodega B, Bione S, Dalpra L, Toniolo D, Ornaghi F, Vegetti W, et al. Influence of intermediate and uninterrupted FMR1 CGG expansions in premature ovarian failure manifestation. Hum Reprod. 2006;21(4):952–7. doi:10.1093/humrep/dei432.

    Article  CAS  PubMed  Google Scholar 

  9. Pastore LM, Young SL, Baker VL, Karns LB, Williams CD, Silverman LM. Elevated prevalence of 35–44 FMR1 trinucleotide repeats in women with diminished ovarian reserve. Reprod Sci. 2012;19(11):1226–31. doi:10.1177/1933719112446074.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Gleicher N, Barad DH. The FMR1 gene as regulator of ovarian recruitment and ovarian reserve. Obstet Gynecol Surv. 2010;65(8):523–30. doi:10.1097/OGX.0b013e3181f8bdda.

    Article  PubMed  Google Scholar 

  11. Kline JK, Kinney AM, Levin B, Brown SA, Hadd AG, Warburton D. Intermediate CGG repeat length at the FMR1 locus is not associated with hormonal indicators of ovarian age. Menopause. 2014;21(7):740–8. doi:10.1097/GME.0000000000000139.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Voorhuis M, Onland-Moret NC, Janse F, Ploos van Amstel HK, Goverde AJ, Lambalk CB. The significance of fragile X mental retardation gene 1 CGG repeat sizes in the normal and intermediate range in women with primary ovarian insufficiency. Hum Reprod. 2014;29(7):1585–93. doi:10.1093/humrep/deu095.

    Article  CAS  PubMed  Google Scholar 

  13. Riggs RM, Duran EH, Baker MW, Kimble TD, Hobeika E, Yin L. Assessment of ovarian reserve with anti-Mullerian hormone: a comparison of the predictive value of anti-Mullerian hormone, follicle-stimulating hormone, inhibin B, and age. Am J Obstet Gynecol. 2008;199(2):202 e1–8. doi:10.1016/j.ajog.2008.05.004.

    Article  Google Scholar 

  14. Seifer DB, Baker VL, Leader B. Age-specific serum anti-Mullerian hormone values for 17,120 women presenting to fertility centers within the United States. Fertil Steril. 2011;95(2):747–50. doi:10.1016/j.fertnstert.2010.10.011.

    Article  CAS  PubMed  Google Scholar 

  15. Dolleman M, Faddy MJ, van Disseldorp J, van der Schouw YT, Messow CM, Leader B, et al. The relationship between anti-Mullerian hormone in women receiving fertility assessments and age at menopause in subfertile women: evidence from large population studies. J Clin Endocrinol Metabolism. 2013;98(5):1946–53. doi:10.1210/jc.2012-4228.

    Article  CAS  Google Scholar 

  16. Sherman S, Pletcher BA, Driscoll DA. Fragile X syndrome: diagnostic and carrier testing. Genet Med : Off J Am College Med Genet. 2005;7(8):584–7. doi: 10.109701.GIM.0000182468.22666.dd.

  17. Garber KB, Visootsak J, Warren ST. Fragile X syndrome. Europ J Human Genet : EJHG. 2008;16(6):666–72. doi:10.1038/ejhg.2008.61.

    Article  CAS  Google Scholar 

  18. Wittenberger MD, Hagerman RJ, Sherman SL, McConkie-Rosell A, Welt CK, Rebar RW, et al. The FMR1 premutation and reproduction. Fertil Steril. 2007;87(3):456–65. doi:10.1016/j.fertnstert.2006.09.004.

    Article  CAS  PubMed  Google Scholar 

  19. Rodriguez-Revenga L, Madrigal I, Pagonabarraga J, Xuncla M, Badenas C, Kulisevsky J, et al. Penetrance of FMR1 premutation associated pathologies in fragile X syndrome families. Europ J Human Genet : EJHG. 2009;17(10):1359–62. doi:10.1038/ejhg.2009.51.

    Article  CAS  Google Scholar 

  20. Leader B, Baker VL. Maximizing the clinical utility of antimullerian hormone testing in women’s health. Curr Opin Obstetrics Gynecol. 2014;26(4):226–36. doi:10.1097/GCO.0000000000000087.

    Article  Google Scholar 

  21. Lie Fong S, Visser JA, Welt CK, de Rijke YB, Eijkemans MJ, Broekmans FJ, et al. Serum anti-mullerian hormone levels in healthy females: a nomogram ranging from infancy to adulthood. J Clin Endocrinol Metabolism. 2012;97(12):4650–5. doi:10.1210/jc.2012-1440.

    Article  CAS  Google Scholar 

  22. Kelsey TW, Wright P, Nelson SM, Anderson RA, Wallace WH. A validated model of serum anti-mullerian hormone from conception to menopause. PLoS One. 2011;6(7):e22024. doi:10.1371/journal.pone.0022024.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. De Geyter C, M’Rabet N, De Geyter J, Zurcher S, Moffat R, Bosch N, et al. Similar prevalence of expanded CGG repeat lengths in the fragile X mental retardation I gene among infertile women and among women with proven fertility: a prospective study. Genet Med : Off J Am College Med Genet. 2014;16(5):374–8. doi:10.1038/gim.2013.146.

    Article  Google Scholar 

  24. Barasoain M, Barrenetxea G, Huerta I, Telez M, Carrillo A, Perez C, et al. Study of FMR1 gene association with ovarian dysfunction in a sample from the Basque Country. Gene. 2013;521(1):145–9. doi:10.1016/j.gene.2013.03.032.

    Article  CAS  PubMed  Google Scholar 

  25. Murray A, Schoemaker MJ, Bennett CE, Ennis S, Macpherson JN, Jones M, et al. Population-based estimates of the prevalence of FMR1 expansion mutations in women with early menopause and primary ovarian insufficiency. Genet Med : Off J Am College Med Genet. 2014;16(1):19–24. doi:10.1038/gim.2013.64.

    Article  CAS  Google Scholar 

  26. Pastore LM, Johnson J. The FMR1 gene, infertility, and reproductive decision-making: a review. Front Genet. 2014;5:195. doi:10.3389/fgene.2014.00195.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Kline JK, Kinney AM, Levin B, Brown SA, Hadd AG, Warburton D. Intermediate CGG repeat length at the FMR1 locus is not associated with hormonal indicators of ovarian age. Menopause. 2014. doi:10.1097/GME.0000000000000139. PubMed.

    PubMed Central  PubMed  Google Scholar 

  28. Choe SA, Kim KC, Lee JY, Kim CH, Hwang D, Jee BC. The relationship between the number of CGG repeats and serum level of anti-Mullerian hormone in women without FMR1 premutation. Eur J Obstet Gynecol Reprod Biol. 2013;169(2):275–8. doi:10.1016/j.ejogrb.2013.05.002.

    Article  CAS  PubMed  Google Scholar 

  29. Gleicher N, Weghofer A, Oktay K, Barad DH. Correlation of triple repeats on the FMR1 (fragile X) gene to ovarian reserve: a new infertility test? Acta Obstet Gynecol Scand. 2009;88(9):1024–30. doi:10.1080/00016340903171058.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie L. F. Gustin.

Additional information

Capsule Using novel multivariate regression models, we observed a statistically significant correlation ofovarian reserve and FMR1 CGG repeat number in women with <55 CGG repeats. Our data suggests that increasing CGG repeat number within the normal rage is associated with a more rapid decline in ovarianreserve.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Figure 1

Comparing the association of summary measures Sum, Max, Gap, and Min with log(AMH). Fitting interaction terms in a linear model reveals a “trumpet” phenomenon for “Sum,” “Max,” and “Min”. The slope of each individual gray line varies based on age, such that the younger women have a positive association, and the older women have a negative association as the CGG repeat length increases. Gap does not exhibit this similar pattern, as it is not significantly associated with AMH at any CGG repeat length. The red line is the overall effect, without controlling for age. Gray lines darken with each increasing age category (<=30, 30–35, >35) (DOC 57 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gustin, S.L.F., Ding, V.Y., Desai, M. et al. Evidence of an age-related correlation of ovarian reserve and FMR1 repeat number among women with “normal” CGG repeat status. J Assist Reprod Genet 32, 1669–1676 (2015). https://doi.org/10.1007/s10815-015-0577-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-015-0577-0

Keywords

Navigation