Skip to main content
Log in

Development of a high-yield technique to isolate spermatogonial stem cells from porcine testes

  • Technological Innovations
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To date, the methods available for isolating spermatogonial stem cells (SSCs) from porcine testicular cells have a low efficiency of cell separating. Therefore, we tried to develop a novel isolation technique with a high-yield cell separating ability to isolate SSCs from porcine testes.

Methods

We confirmed the presence of SSCs by measuring alkaline phosphatase (AP) activity and SSC-specific gene expression in neonatal porcine testis-derived testicular cells. Subsequently, the isolation of SSCs from testicular cells was performed using different techniques as follows: differential plating (DP), double DP, Petri dish plating post-DP, magnetic-activated cell sorting (MACS), and MACS post-DP. Positive AP staining was used to assess and compare the isolation efficiency of each method.

Results

Petri dish plating post-DP resulted in the highest isolation efficiency. The putative SSCs isolated using this method was then further characterized by analyzing the expression of SSC-specific genes and -related proteins, and germ cell-specific genes. OCT4, NANOG, EPCAM, THY1, and UCHL1 were expressed transcriptionally, and OCT4, NANOG, SOX2, TRA-1-60, TRA-1-81, and PLZF were expressed translationally in 86 % of the isolated SSCs. In contrast, no difference was observed in the percentage of cells expressing luteinizing hormone receptor (LHR), a Leydig cell-specific protein, or GATA4, a Sertoli cell-specific protein, between SSCs and negative control cells. In addition, transcriptional expression of VASA, a primordial germ cell-specific marker, and DAZL, a premeiotic germ cell-specific marker, wasn’t and was detected, respectively.

Conclusions

We successfully developed a novel high-yield technique to isolate SSCs from porcine testes to facilitate future porcine SSC-related research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. McLaren A. Primordial germ cells in the mouse. Dev Biol. 2003;262(1):1–15.

    Article  CAS  PubMed  Google Scholar 

  2. Brinster RL. Germline stem cell transplantation and transgenesis. Science. 2002;296:2174–6.

    Article  CAS  PubMed  Google Scholar 

  3. Yang Y, Honaramooz A. Efficient purification of neonatal porcine gonocytes with Nycodenz and differential plating. Reprod Fertil Dev. 2011;23:496–505.

    Article  CAS  PubMed  Google Scholar 

  4. Dym M. Spermatogonial stem cells of the testis. PNAS. 1994;91:11287–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. De Rooij DG. Stem cells in the testis. Int J Exp Pathol. 1998;79:67–80.

    Article  PubMed  Google Scholar 

  6. De Rooij DG. Proliferation and differentiation of spermatogonial stem cells. Reproduction. 2001;121:347–54.

    Article  PubMed  Google Scholar 

  7. Aponte PM, van Bragt MP, De Rooij DG, van Pelt AM. Spermatogonial stem cells: characteristics and experimental possibilities. APMIS. 2005;113:727–42.

    Article  PubMed  Google Scholar 

  8. Oatley JM, Brinster RL. Regulation of spermatogonial stem cell self-renewal in mammals. Annu Rev Cell Dev Biol. 2008;24:263–86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Kanatsu-Shinohara M, Ogonuki N, Inoue K, Miki H, Ogura A, Toyokuni S, et al. Long-term proliferation in culture and germline transmission of mouse male germline stem cell. Biol Reprod. 2003;69:612–6.

    Article  CAS  PubMed  Google Scholar 

  10. Kanatsu-Shinohara M, Inoue K, Lee J, Yoshimoto M, Ogonuki N, Miki H, et al. Generation of pluripotent stem cells from neonatal mouse testis. Cell. 2004;119:1001–12.

    Article  CAS  PubMed  Google Scholar 

  11. Kanatsu-Shinohara M, Toyokuni S, Shinohara T. Genetic selection of mouse male germline stem cells in vitro: offspring from single stem cells. Biol Reprod. 2005;72:236–40.

    Article  CAS  PubMed  Google Scholar 

  12. Hofmann MC. Gdnf signaling pathways within the mammalian spermatogonial stem cell niche. Mol Cell Endocrinol. 2008;288:95–103.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Caires K, Broady J, McLean D. Maintaining the male germline: regulation of spermatogonial stem cells. J Endocrinol. 2010;205:133–45.

    Article  CAS  PubMed  Google Scholar 

  14. Oatley JM, Brinster RL. The germline stem cell niche unit in mammalian testes. Physiol Rev. 2012;92:577–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Kubota H, Brinster RL. Technology insight: in vitro culture of spermatogonial stem cells and their potential therapeutic uses. Nature. 2006;2:99–108.

    CAS  Google Scholar 

  16. Vlajković S, Cukuranović R, Bjelaković MD, Stefanović V. Possible therapeutic use of spermatogonial stem cells in the treatment of male infertility: a brief overview. Sci World J. 2012;2012:374151.

    Google Scholar 

  17. Daley GQ, Scadden DT. Prospects for stem cell-based therapy. Cell. 2008;132:544–8.

    Article  CAS  PubMed  Google Scholar 

  18. Nowak-Imialek M, Kues W, Carnwath JW, Niemann H. Pluripotent stem cells and reprogrammed cells in farm animals. Microsc Microanal. 2011;17:474–97.

    Article  CAS  PubMed  Google Scholar 

  19. Lai L, Kolber-Simonds D, Park KW, Cheong HT, Greenstein JL, Im GS, et al. Production of α-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science. 2008;295:1089–92.

    Article  Google Scholar 

  20. Lavitrano M, Busnelli M, Cerrito MG, Giovannoni R, Manzini S, Vargiolu A. Sperm-mediated gene transfer. Reprod Fertil Dev. 2006;18:19–23.

    Article  CAS  PubMed  Google Scholar 

  21. Prather RS, Shen M, Dai Y. Genetically modified pigs for medicine and agriculture. Biotechnol Genet Eng Rev. 2008;25:245–66.

    CAS  PubMed  Google Scholar 

  22. Goel S, Sugimoto M, Minami N, Yamada M, Kume S, Imai H. Identification, isolation, and in vitro culture of porcine gonocytes. Biol Reprod. 2007;77:127–37.

    Article  CAS  PubMed  Google Scholar 

  23. Han SY, Gupta MK, Lee SJ, Uhm HT. Isolation and in vitro culture of pig spermatogonial stem cell. AJAS. 2009;22:187–93.

    CAS  Google Scholar 

  24. Lee WY, Park HJ, Lee R, Lee KH, Kim YH, Ryu BY, et al. Establishment and in vitro culture of porcine spermatogonial germ cells in low temperature culture conditions. Stem Cell Res. 2013;11:1234–49.

    Article  CAS  PubMed  Google Scholar 

  25. Hao J, Yamamoto M, Richardson TE, Chapman KM, Denard BS, Hammer RE, et al. Sohlh2 knockout mice are male-sterile because of degeneration of differentiating type A spermatogonia. Stem Cells. 2008;26(6):1587–97.

    Article  CAS  PubMed  Google Scholar 

  26. Luo J, Megee S, Rathi R, Dobrinski I. Protein gene product 9.5 is a spermatogonia-specific marker in the pig testis: application to enrichment and culture of porcine spermatogonia. Mol Reprod Dev. 2006;73:1531–40.

    Article  CAS  PubMed  Google Scholar 

  27. Luo J, Megee S, Rathi R, Dobrinski I. Asymmetric distribution of UCH-L1 in spermatogonia is associated with maintenance and differentiation of spermatogonial stem cells. J Cell Physiol. 2009;220:460–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Goel S, Fujihara M, Minami N, Yamada M, Imai H. Expression of NANOG, but not POU5F1, points to the stem cell potential of primitive germ cells in neonatal pig testis. Reproduction. 2008;135:785–95.

    Article  CAS  PubMed  Google Scholar 

  29. Ryu BY, Kubota H, Avarbock MR, Brinster RL. Conservation of spermatogonial stem cell self-renewal signaling between mouse and rat. Proc Natl Acad Sci U S A. 2005;102(40):14302–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. International Stem Cell Initiative, Adewumi O, Aflatoonian B, Ahrlund-Richter L, Amit M, Andrews PW, et al. Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat Biotechnol. 2007;25:803–16.

    Article  CAS  PubMed  Google Scholar 

  31. Schopperle WM, DeWolf WC. The TRA-1-60 and TRA-1-81 human pluripotent stem cell markers are expressed on podocalyxin in embryonal carcinoma. Stem Cells. 2007;25:723–30.

    Article  CAS  PubMed  Google Scholar 

  32. Gafni O, Weinberger L, Mansour AA, Manor YS, Chomsky E, Ben-Yosef D, et al. Derivation of novel human ground state naive pluripotent stem cells. Nature. 2013;504:282–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Agricultural Biotechnology Development Program (IPET112015-4), Ministry of Agriculture, Food and Rural Affairs, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Tae Lee.

Additional information

Capsule Petri dish plating post-DP is a high-yield technique that isolates SSCs from porcine neonatal testis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, M.H., Park, J.E., Kim, M.S. et al. Development of a high-yield technique to isolate spermatogonial stem cells from porcine testes. J Assist Reprod Genet 31, 983–991 (2014). https://doi.org/10.1007/s10815-014-0271-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-014-0271-7

Keywords

Navigation