Skip to main content
Log in

Possibility of Pumping Lasers on Alexandrite and Ti:Sapphire Leds Emitting in the Range of 440–510 nm

  • Published:
Journal of Applied Spectroscopy Aims and scope

The energy and spectral characteristics of the most powerful AlInGaN LEDs with emission spectrum peaks at wavelengths of 440, 470, and 510 nm were studied in relation to the pumping of two laser media: Ti:Sapphire (Ti:Al2O3) and alexandrite (Cr:Al2BeO4). The absorption coefficients of the LED radiation in the laser media were studied experimentally with respect to the peak wavelength, operating mode, and excitation level. The corresponding spectral matching values (the efficiency of absorption of the pump radiation) were calculated for various combinations of the LEDs and active laser media. The energy characteristics (radiation power, pulse energy) of the LED emitters were studied over a wide range of excitation levels. The maximum energy capabilities of the LED emitters were assessed in terms of both output optical power and efficiency. The optimum combinations of LEDs and active laser media to achieve laser generation were determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Walling, O. Peterson, H. Jenssen, R. Morris, and E. O′Dell, IEEE J. Quantum Electron., 16, No. 12, 1302–1315 (1980).

  2. P. F. Moulton, J. Opt. Soc. Am. B, 3, No. 1, 125–133 (1986).

    Article  ADS  Google Scholar 

  3. S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosawa, and F. Kannari, Appl. Phys. Express, 7, No. 2, Article ID 022702 (2014).

  4. K. Gürel, V. J. Wittwer, M. Hoff mann, C. J. Saraceno, S. Hakobyan, B. Resan, A. Rohrbacher, K. Weingarten, S. Schilt, and T. Südmeyer, Opt. Express, 23, No. 23, 30043–30048 (2015).

  5. S. Yu. Karpov, Proc. SPIE, 9768, 1–17 (2016).

    Google Scholar 

  6. S. Yu. Karpov, Opt. Quantum Electron., 47, No. 6, 1293–1303 (2015).

    Article  Google Scholar 

  7. A. L. Zakgeim, A. V. Aladov, A. E. Ivanov, N. A. Talnishnikh, and A. E. Chernyakov, Techn. Phys. Lett., 48, No. 4, 192–195 (2022).

    Google Scholar 

  8. https://lumileds.com/wp-content/uploads/DS309-luxeon-rubix-datasheet.pdf.

  9. A. Laubsch, M. Sabathil, J. Baur, M. Peter, and B. Hahn, IEEE Trans. Electron. Devices, 57, No. 1, 79–87 (2010).

    Article  ADS  Google Scholar 

  10. T. Taki and M. Strassburg, ECS J. Solid State Sci. Technol., 9, No. 1, 15–17 (2020).

    Article  Google Scholar 

  11. A. V. Aladov, A. L. Zakgeim, A. E. Ivanov, and A. E. Chernyakov, J. Appl. Spectrosc., 89, 439–442 (2022).

    Article  ADS  Google Scholar 

  12. J. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. A. Pete, and R. C. Morrisg, IEEE J. Quantum Electron., Article ID QE-21, 1568–1581 (1985).

  13. G. M. Thomas, A. Minassian, X. Sheng, and M. J. Damzen, Opt. Express, 24, No. 24, 27212–27224 (2016).

    Article  ADS  Google Scholar 

  14. S. T. Lai and M. L. Shand, J. Appl. Phys., 54, No. 10, 5642–5644 (1983).

    Article  ADS  Google Scholar 

  15. R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, Opt. Commun., 97, Nos. 5–6, 363–366 (1993).

    Article  ADS  Google Scholar 

  16. S. Ghambari, R. Akbari, and A. Major, Opt. Express, 24, No. 13, 14836–14840 (2016).

    Article  ADS  Google Scholar 

  17. W. R. Kerridge-Johns and M. J. Damzen, Opt. Express, 26, No. 6, 7771–7785 (2018).

    Article  ADS  Google Scholar 

  18. P. Pichon, A. Barbet, J.-P. Blanchot, F. Druon, F. Balembois, and P. Georges, Opt. Lett., 42, No. 20, 4191–4194 (2017).

    Article  ADS  Google Scholar 

  19. P. F. Moulton, Opt. News, 8, No. 6, 9 (1982).

    Article  Google Scholar 

  20. L. Xu, G. Tempea, A. Poppe, M. Lenzner, C. Spielmann, F. Krausz, A. Stingl, and K. Ferencz, Appl. Phys. B, 65, No. 2, 151–159 (1997).

    Article  ADS  Google Scholar 

  21. R. Ell, U. Morgner, F. X. Kãârtner, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T. Tschudi, M. J. Lederer, A. Boiko, and B. Luther-Davies, Opt. Lett., 26, No. 6, 373–375 (2001).

    Article  ADS  Google Scholar 

  22. P. W. Roth, A. J. Maclean, D. Burns, and A. J. Kemp, Opt. Express, 20, No. 18, 20629–20634 (2012).

    Article  ADS  Google Scholar 

  23. D. A. Kopylov, M. N. Esaulkov, I. I. Kuritsyn, A. O. Mavritskiy, B. E. Perminov, A. V. Konyashchenko, T. V. Murzina, and A. I. Maydykovskiy, Laser Phys. Lett., 15, No. 4. 45–51 (2018).

    Article  Google Scholar 

  24. J. Piprek, Phys. Status Solidi (a), 207, No. 10, 2217–2225 (2010).

  25. L. Kangin, B. Sangyoon, J.-S. Kwag, J.-H. Kwon, and J. Yi, J. Korean Phys. Soc., 59, No. 5, 3239–3245 (2011).

    ADS  Google Scholar 

  26. P. Pichon, A. Barbet, J.-P. Blanchot, F. Druon, F. Balembois, and P. Georges, Opt. Lett., 5, No. 10, 1236–1239 (2018).

    Google Scholar 

  27. A. L. Zakgeim and A. E. Chernyakov, Svetotekhnika, 4, 51–56 (2013).

    Google Scholar 

  28. A. Bulashevich and S. Y. Karpov, Phys. Status Solidi (c), 5, No. 6, 2066–2069 (2008).

  29. U. Demirbas, F. X. Kärtner, J. Opt. Soc. Am. B, 37, No. 2, 450–472 (2020).

    Article  ADS  Google Scholar 

  30. Zhang-Wang Miao, Hai-juan Yu, Jing-Yuan Zhang, S. Zou, P. Zhao, Bojie Lou, and Xuechun Lin, IEEE Photon. Technol. Lett., 32, No. 5, 247–250 (2020).

  31. A. V. Aladov, A. L. Zakgeim, A. E. Ivanov, and A. E. Chernyakov, Svetotekhnika, 5, 3–8 (2023).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Aladov.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 91, No. 2, pp. 204–210, March–April, 2024.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aladov, A.V., Zakgeim, A.L., Ivanov, A.E. et al. Possibility of Pumping Lasers on Alexandrite and Ti:Sapphire Leds Emitting in the Range of 440–510 nm. J Appl Spectrosc 91, 286–291 (2024). https://doi.org/10.1007/s10812-024-01719-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-024-01719-7

Keywords

Navigation