Skip to main content
Log in

Combined Use of Laser-Induced Breakdown and X-Ray Fluorescence Spectroscopies for Elemental Analysis of Aquatic Organisms

  • Published:
Journal of Applied Spectroscopy Aims and scope

Elemental chemical analysis of aquatic organisms is necessary for biochemical and ecological studies and pollution monitoring. Most analytical methods suitable for this require dissolution of solid samples. However, nondestructive analysis is possible by x-ray fluorescence spectroscopy (XRF) and laser-induced breakdown spectroscopy (LIBS), the analytical capabilities of which are complementary. Results from XRF and LIBS for determination of several macro- and microelements (P, Cl, K, Ca; B, Mn, Fe, Cu, Zn, and Sr) in organs and tissues of fishes and aquatic plants (bream, pike, horsetail, and hornwort) were compared using calibration curves. Signals of elements were normalized to the intensity of incoherently scattered radiation (in XRF) and to that of the Balmer Hα emission line (in LIBS) to account for matrix effects. A comparison of the results with data from an independent analysis by inductively coupled plasma optical emission spectroscopy showed that LIBS was superior to XRF with respect to accuracy for relatively light elements (P, K, Ca, Mn, Fe, and Cu). The advantage switched to XRF for heavier elements (Zn and Sr). The combination of XRF and LIBS made it possible to broaden the range of measurable elements. In some cases (P, K, Mn, Fe, Zn, and Sr), chemical destruction of the sample was unnecessary, which was important for simplification of the analytical procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. M. Wood, in: Fish Physiology: Homeostasis and Toxicology of Essential Metals, C. M. Wood, A. P. Farrell, and C. Brauner (Eds.), Vol. 31A, Academic Press (2011), pp. 1–51.

  2. T. I. Moiseenko, Geokhimiya, No. 3, 222–233 (2015).

    Google Scholar 

  3. I. V. Kizevetter, Biochemistry of Aquatic Raw Materials [in Russian], Pishchevaya Promyshlennostʹ, Moscow (1973).

    Google Scholar 

  4. N. I. Sushkov, N. V. Lobus, I. V. Seliverstova, and T. A. Labutin, Opt. Spectrosc., 128, No. 9, 1343–1349 (2020).

    Article  ADS  Google Scholar 

  5. N. I. Sushkov, G. Galbacs, K. Fintor, N. V. Lobus, and T. A. Labutin, Analyst, 147, 3248–3257 (2022).

    Article  ADS  Google Scholar 

  6. N. I. Sushkov, G. Galbacs, P. Janovszky, N. V. Lobus, and T. A. Labutin, Sensors, 22, 8234 (2022).

    Article  ADS  Google Scholar 

  7. J. Ylikorkko, G. N. Christensen, H. J. Andersen, D. Denisov, P.-A. Amundsen, P. Terentjev, and E. Jelkanen, Environmental Monitoring Programme for Aquatic Ecosystems in the Norwegian, Finnish and Russian Border Area. Updated Implementation Guidelines, Centre for Economic Development, Transport and the Environment for Lapland (2015).

  8. N. A. Panichev and S. E. Panicheva, Food Chem., 166, 432–441 (2015).

    Article  Google Scholar 

  9. R. R. Rasmussen, R. V. Hedegaard, E. H. Larsen, and J. J. Sloth, Anal. Bioanal. Chem., 403, No. 10, 2825–2834 (2012).

    Article  Google Scholar 

  10. T. I. Moiseenko and L. P. Kudryavtseva, Environ. Pollut., 114, No. 2, 285–297 (2001).

    Article  Google Scholar 

  11. N. A. Gashkina, T. I. Moiseenko, L. A. Shuman, and I. M. Koroleva, Ecotoxicol. Environ. Saf., 239, Article ID 113659 (2022).

  12. M. O. Varra, S. Ghidini, L. Husakova, A. Ianieri, and E. Zanardi, Foods, 10, No. 2, 270 (2021).

    Article  Google Scholar 

  13. O. Y. Song, M. A. Islam, J. H. Son, J. Y. Jeong, H. E. Kim, L. S. Yeon, N. Khan, N. Jamila, and K. S. Kim, Meat Sci., 172, Article ID 108344 (2021).

  14. T. I. Moiseenko, N. A. Gashkina, Y. N. Sharova, and L. P. Kudryavtseva, Ecotoxicol. Environ. Saf., 71, No. 3, 837–850 (2008).

    Article  Google Scholar 

  15. M. B. Bueno Guerra, C. E. G. R. Schaefer, G. G. A. de Carvalho, P. F. de Souza, D. S. Junior, L. C. Nunes, and F. J. Krug, J. Anal. At. Spectrom., 28, No. 7, 1096–1101 (2013).

  16. P. M. Farkov and A. L. Finkelʹshtein, Anal. Kontrol, 6, No. 4, 485–489 (2002).

    Google Scholar 

  17. A. Hokura and E. Harada, in: Metallomics: Recent Analytical Techniques and Applications, Y. Ogra and T. Hirata (Eds.), Springer Japan, Tokyo (2017), pp. 125–145.

  18. G. A. Leonova and V. A. Bobrov, Geochemical Role of Plankton in Siberian Continental Aquifers in the Concentration and Biosedimentation of Microelements [in Russian], Geo, Novosibirsk (2012).

    Google Scholar 

  19. R. A. Rezk, A. H. Galmed, M. Abdelkreem, N. A. Abdel Ghany, and M. A. Harith, J. Adv. Res., 14, 1–9 (2018).

  20. Y. Zhang, T. Zhang, and H. Li, Spectrochim. Acta, Part B, 181, Article ID 106218 (2021).

  21. K. Rawat, N. Sharma, and V. K. Singh, X-Ray Fluorescence in Biological Sciences, Wiley Online Books (2022), pp. 1–20.

  22. F. M. Peinado, S. M. Ruano, M. G. B. Gonzalez, and C. E. Molina, Geoderma, 159, No. 1, 76–82 (2010).

    Article  ADS  Google Scholar 

  23. G. G. Arantes de Carvalho, M. B. Bueno Guerra, A. Adame, C. S. Nomura, P. V. Oliveira, H. W. Pereira de Carvalho, D. Santos, L. C. Nunes, and F. J. Krug, J. Anal. At. Spectrom., 33, No. 6, 919–944 (2018).

  24. D. Santos, L. C. Nunes, G. G. A. de Carvalho, M. da S. Gomes, P. F. de Souza, F. de O. Leme, L. G. C. dos Santos, and F. J. Krug, Spectrochim. Acta, Part B, 7172, 3–13 (2012).

  25. R. Zeisler, Fresenius′ J. Anal. Chem., 360, No. 3, 376–379 (1998).

    Google Scholar 

  26. G. Galbacs, Laser-Induced Breakdown Spectroscopy in Biological, Forensic and Materials Sciences, Springer International Publishing, Cham (2022).

    Google Scholar 

  27. N. B. Zorov, A. A. Gorbatenko, T. A. Labutin, and A. M. Popov, Spectrochim. Acta, Part B, 65, No. 8, 642–657 (2010).

    Article  Google Scholar 

  28. L. C. Peruchi, L. C. Nunes, G. G. A. de Carvalho, M. B. B. Guerra, E. de Almeida, I. A. Rufini, D. Santos, and F. J. Krug, Spectrochim. Acta, Part B, 100, 129–136 (2014).

    Article  ADS  Google Scholar 

  29. A. M. Popov, T. F. Akhmetzhanov, S. M. Zaytsev, A. N. Drozdova, I. A. Kalko, and T. A. Labutin, J. Anal. At. Spectrom., 37, No. 10, 2144–2154 (2022).

    Article  Google Scholar 

  30. F. O. Leme, D. M. Silvestre, A. N. Nascimento, and C. S. Nomura, J. Anal. At. Spectrom., 33, No. 8, 1322–1329 (2018).

    Article  Google Scholar 

  31. Determination of Mass Fraction of Chemical Elements in Animal and Vegetable Samples by X-Ray Fluorescence on a CEP-01 Instrument, MVI:MN 3272-2009, MGEU, Minsk (2009).

  32. Description of Measurement Means Type No. 44726-10: X-ray Emission Energy Spectrometers CEP-01, VNIIFTRI (2010); https://fgis.gost.ru/fundmetrology/registry/4/items/355615

  33. C. Aragon, J. A. Aguilera, and F. Penalba, Appl. Spectrosc., 53, No. 10, 1259–1267 (1999).

    Article  ADS  Google Scholar 

  34. E. V. Smirnova and O. V. Zarubina, Stand. Obraztsy, No. 3, 45–57 (2014).

    Google Scholar 

  35. Quantitative Chemical Analysis of Soils. Procedure for Measurements of Mass Fractions of Metals in Precipitates of Waste Waters, Bottom Sediments, and Vegetable Samples by Spectral Methods [in Russian], PND F 16.2.2:2.3.71-2011, FBU FTsAO, Moscow (2011).

  36. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy, John Wiley & Sons, Chichester, West Sussex, England, Hoboken, NJ (2006).

    Book  Google Scholar 

  37. K. Rawat, N. Sharma, and V. K. Singh, X-Ray Fluorescence in Biological Sciences, Wiley Online Books (2022), pp. 1–20.

  38. R. van Grieken and A. Markowicz, Handbook of X-ray Spectrometry, Marcel Dekker, New York and Basel (2002).

    Google Scholar 

  39. G. V. Pavlinskii, Principles of the Physics of X-ray Radiation [in Russian], Fizmatlit, Moscow (2007).

    Google Scholar 

  40. A. V. Podkorytova and T. I. Vishnevskaya, Parafarm. Farm. Byull., No. 2, 22–23 (2003).

  41. E. V. Lysenko, Complex Assessment of the Chemical Composition of Ecosystems of Small Lakes of Eastern Sikhote-Alin [in Russian], Candidate Dissertation in Geographical Sciences, Vladivostok, TIG VDVO RAN (2018).

  42. A. J. Muztar, S. J. Slinger, and J. H. Burton, Can. J. Plant Sci., 58, No. 3, 851–862 (1978).

    Article  Google Scholar 

  43. A. P. Vinogradov, Complete Collection of Works in 18 Volumes, Vol. 1. Chemical Element Composition of Marine Organisms [in Russian], RAN, Moscow (2020).

  44. E. Tognoni, G. Cristoforetti, S. Legnaioli, and V. Palleschi, Spectrochim. Acta, Part B, 65, No. 1, 1–14 (2010).

    Article  Google Scholar 

  45. Z. Hu, D. Zhang, W. Wang, F. Chen, Y. Xu, J. Nie, Y. Chu, and L. Guo, Trends Anal. Chem., 152, Article ID 116618 (2022).

  46. J. A. Aguilera, C. Aragon, G. Cristoforetti, and E. Tognoni, Spectrochim. Acta, Part B, 64, No. 7, 685–689 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Sushkov.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 90, No. 6, pp. 917–925, November–December, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sushkov, N.I., Kurian, N.N., Anuchin, S.N. et al. Combined Use of Laser-Induced Breakdown and X-Ray Fluorescence Spectroscopies for Elemental Analysis of Aquatic Organisms. J Appl Spectrosc 90, 1273–1280 (2024). https://doi.org/10.1007/s10812-024-01664-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-024-01664-5

Keywords

Navigation