Skip to main content
Log in

Laser-Driven Electron Acceleration by q-Gaussian Laser Pulse in Plasma: Effect of Self-Focusing

  • Published:
Journal of Applied Spectroscopy Aims and scope

A scheme for electron acceleration by self-focused q-Gaussian laser pulses in under-dense plasma has been presented. The relativistic increase in the mass of plasma electrons gives nonlinear response of plasma to the incident laser pulse resulting in self-focusing. Under the combined effects of the saturation nature of relativistic nonlinearity of plasma, self-focusing and diffraction broadening of the laser pulse, the beam width of the laser pulse evolves in an oscillatory manner. An electron initially on the pulse axis and at the front of the self-focused pulse, gains energy from it until the peak of the pulse is reached. When the electron reaches the tail of the pulse, the pulse begins to diverge. Thus, the deacceleration of the electron from the trailing part of the pulse is less, compared to the acceleration provided by the ascending part of the pulse. Hence, the electron leaves the pulse with net energy gain. The differential equations for the motion of electrons have been solved numerically by incorporating the effect of self-focusing of the laser pulse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. L. Smith, Sci. Am., 283, 70 (2000).

    Article  Google Scholar 

  2. C. J. Rhodes, Sci. Progress, 96, 95 (2013).

    Article  Google Scholar 

  3. K. R. Symon, SAE Trans., 68, 157 (1960).

    Google Scholar 

  4. K. R. Hogstrom and P. R. Almond, Phys. Med. Biol., 51, Article ID R455 (2006).

  5. J. Mittendorfer and B. G. Wagner, Rad. Phys. Chem., 173, Article ID 108870 (2020).

  6. S. Kutsaev, R. Agustsson, A. Arodzero, S. Boucher, J. Hartzell, A. Murokh, F. O. Shea, and A. Y. Smirnov, Phys. Proc., 90, 115 (2017).

    Article  ADS  Google Scholar 

  7. S. V. Kutsaev, Tech. Phys., 66, 161 (2021).

    Article  Google Scholar 

  8. L. R. Fernandez, AIP Conf. Proc., 1271, 159 (2010).

    Google Scholar 

  9. E. Bujdosó and L. Toth, J. Radioanal. Chem., 59, 255 (1980).

    Article  Google Scholar 

  10. M. Dunne, Science, 312, 374 ( 2006)

    Article  Google Scholar 

  11. C. Joshi, Sci. Am., 294, 40 (2006).

    Article  Google Scholar 

  12. E. Esarey, C. B. Schroeder, and W. P. Leemans, Rev. Mod. Phys., 81, Article ID 1229 (2009).

  13. J. M. Dawson, Sci. Am., 260, 54 (1989).

    Article  Google Scholar 

  14. T. Tajima and J. M. Dawson, Phys. Rev. Lett., 43, 267 (1979).

    Article  ADS  Google Scholar 

  15. C. Joshi, T. Tajima, J. M. Dawson, H. A. Baldis, and N. A. Ebrahim, Phys. Rev. Lett., 47, Article ID 1285 (1981).

  16. R. Singh and A. K. Sharma, Phys. Plasmas, 17, Article ID 123109 (2010).

  17. V. Sazegari, M. Mirzaie, and B. Shokri, Phys. Plasmas, 13, Article ID 033102 (2006).

  18. A. Sharma and V. K. Tripathi, Phys. Plasmas, 16, Article ID 043103 (2009).

  19. N. Gupta and S. Kumar, Pramana, 95, 53 (2021).

    Article  ADS  Google Scholar 

  20. N. Gupta, S. Kumar, S. Chaudhry, S. B. Bhardwaj, and S. Kumar, Nonlinear Opt. Quantum Opt., 55, 281 (2022).

    Google Scholar 

  21. A. Singh and N. Gupta, Optik, 127, Article ID 5452 (2016).

  22. A. Singh and N. Gupta, Phys. Plasmas, 22, Article ID 062115 (2015).

  23. P. K. Patel, M. H. Key, A. J. Mackinnon, R. Berry, M. Borghesi, D. M. Chambers, H. Chen, R. Clarke, C. Damian, R. Eagleton, R. Freeman, S. Glenzer, G. Gregori, R. Heathcote, D. Hey, N. Izumi, S. Kar, J. King, A. Nikroo, A. Niles, H. S. Park, J. Pasley, N. Patel, R. Shepherd, R. A. Snavely, D. Steinman, C. Stoeckl, M. Storm, W. Theobald, R. Town, R. Van Maren, S. C. Wilks, and B. Zhang, Plasma Phys. Controlled Fusion, 47, Article ID B833 (2005).

  24. M. Nakatsutsumi, J. R. Davies, R. Kodama, J. S. Green, K. L. Lancaster, K. U. Akli, F. N. Beg, S. N. Chen, D. Clark, R. R. Freeman, C. D. Gregory, H. Habara, R. Heathcote, D. S. Hey, K. Highbarger, P. Jaanimagi, M. H. Key, K. Krushelnick, T. Ma, A. MacPhee, A. J. MacKinnon, H. Nakamura, R. B. Stephens, M. Storm, M. Tampo, W. Theobald, L. Van Woerkom, R. L. Weber, M. S. Wei, N. C. Woolsey, and P. A. Norreys, New J. Phys., 10, Article ID 043046 (2008).

  25. C. Tsallis, Braz. J. Phys., 39, 337 (2009).

    Article  ADS  Google Scholar 

  26. A. I. Akhiezer and R. V. Polovin, Sov. Phys. JETP, 3, 696 (1956).

    Google Scholar 

  27. D. Anderson, M. Bonnedal, and M. Lisak, J. Plasma Phys., 23, 115 (1980).

    Article  ADS  Google Scholar 

  28. D. Anderson and M. Bonnedal, Phys. Fluids, 22, 105 (1979).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Gupta.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 90, No. 5, p. 809, September–October, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, N., Johari, R. Laser-Driven Electron Acceleration by q-Gaussian Laser Pulse in Plasma: Effect of Self-Focusing. J Appl Spectrosc 90, 1133–1141 (2023). https://doi.org/10.1007/s10812-023-01643-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-023-01643-2

Keywords

Navigation