Skip to main content
Log in

Metal–Dielectric Nanostructures for Enhancement of Molecular Fluorescence

  • Published:
Journal of Applied Spectroscopy Aims and scope

In metal–dielectric nanostructures with metal inhomogeneities of about 10–100 nm in size strong local concentration of electromagnetic radiation at the frequencies of the incident (primary) and emitted (secondary) radiation occurs simultaneously with a considerable increase of the rate of nonradiative transitions (fluorescence quenching). The general principles of the use of metal–dielectric nanostructures to enhance the fluorescence and the experimental use of these principles for organic molecules, including biomolecules with fluorescent labels, are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Shalaev, Nonlinear Optics of Random Media: Fractal Composites and Metal-Dielectric Films, 158, Springer Science & Business Media (1999)

  2. M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, and J. Zyss, Phys. Rev. Lett., 92, No. 5, Article ID 057402 (2004).

  3. E. M. Purcell, Phys. Rev., 69, 681 (1946).

    Article  Google Scholar 

  4. S. V. Gaponenko, Phys. Rev. B, 65, Article ID 140303 (2002).

  5. S. V. Gaponenko and D. V. Guzatov, Chem. Phys. Lett., 477, Nos. 4–6, 411–414 (2009).

    Article  ADS  Google Scholar 

  6. K. Kneipp, M. Moskovits, and H. Kneipp, Surface-Enhanced Raman Scattering: Physics and Applications, Springer Science & Business Media (2006).

  7. C. D. Geddes and J. R. Lakowicz, J. Fluoresc., 12, 121–129 (2002).

    Article  Google Scholar 

  8. J. F. Li, C. Y. Li, and R. F. Aroca, Chem. Soc. Rev., 46, No. 13, 3962–3979 (2017).

    Article  Google Scholar 

  9. C. Zhan, X. J. Chen, J. Yi, J. F. Li, D. Y. Wu, and Z. Q. Tian, Nature Rev. Chem., 2, No. 9, 216–230 (2018).

    Article  Google Scholar 

  10. O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Naabiev, U. Woggon, and M. Artemyev, Nano Lett., 2, No. 12, 1449–1452 (2002).

    Article  ADS  Google Scholar 

  11. P. P. Pompa, L. Martiradonna, A. D. Torre, F. D. Sala, L. Manna, M. De Vittorio, F. Calabi, R. Cingolani, and R. Rinaldi, Nature Nanotechnol., 1, No. 2, 126–130 (2006).

    Article  ADS  Google Scholar 

  12. J. T. Van Wijngaarden, M. M. Van Schooneveld, C. de Mello Donegá, and A. Meijerink, Europhys. Lett., 93, No. 5, Article ID 57005 (2011).

  13. N. Strekal, V. Oskirko, A. Maskevich, S. Maskevich, J.-C. Jardillier, and I. Nabiev, Biopolymers (Biospectroscopy), 57, No. 6, 325–328 (2000).

  14. V. V. Klimov, M. Ducloy, and V. S. Letokhov, Euro. Phys. J. D, 20, 133–148 (2002).

    Article  ADS  Google Scholar 

  15. V. V. Klimov and D. V. Guzatov, Quant. Electron., 37, 209 (2007).

    Article  ADS  Google Scholar 

  16. V. V. Klimov and V. S. Letokhov, Laser Phys., 15, 61–73 (2005).

    Google Scholar 

  17. D. V. Guzatov, Eff ect of Nanoobjects of Complex Confi guration on the Characteristics of Spontaneous Emission of Atoms and Molecules [in Russian], Thesis, Dr. Phys.-Math. Sciences, Grodno (2019).

  18. V. V. Klimov, Nanoplasmonics [in Russian], Fiz.-Mat Lit., Moscow (2009).

    Google Scholar 

  19. K. Li, M. I. Stockman, and D. J. Bergman, Phys. Rev. Lett., 91, No. 22, Article ID 227402 (2003).

  20. Z. B. Wang, B. S. Luk’aanchuk, W. Guo, S. P. Edwardson, D. J. Whitehead, L. Li, Z. Liu, K. G. Watkins, J. Chem. Phys., 128, No. 9, Article ID 094705 (2008).

  21. R. A. Dynich, A. N. Ponyavina, and V. V. Filippov, J. Appl. Spectrosc., 76, 705–710 (2009).

    Article  ADS  Google Scholar 

  22. D. V. Guzatov and V. V. Klimov, New J. Phys., 13, No. 5, Article ID 053034 (2011).

  23. Q. H. Park, Contemporary Phys., 50, No. 2, 407–423 (2009).

    Article  ADS  Google Scholar 

  24. L. Novatny and N. Van Hulst, Nature Photon., 5, No. 2, 83–90 (2011).

    Article  ADS  Google Scholar 

  25. A. E. Krasnok, I. S. Maksymov, A. I. Denisyuk, P. A. Belov, A. E. Miroshnichenko, C. R. Simovski, and Y. S. Kivshar, Physics Uspekhi, 56, No. 6, 539 (2013).

    Article  ADS  Google Scholar 

  26. D. V. Guzatov, S. V. Vaschenko, V. V. Stankevich, A. Ya. Lunevich, Y. F. Glukhov, and S. V. Gaponenko, J. Phys. Chem. C, 116, 10723–10733 (2012).

    Article  Google Scholar 

  27. D. V. Guzatov, S. V. Gaponenko, and H. V. Demir, AIP Adv., 8, No. 1, Article ID 015324 (2018).

  28. D. V. Guzatov, S. V. Gaponenko, H. V. Demir, Plasmonics, 13, 2133–2140 (2018).

    Article  Google Scholar 

  29. S. V. Gaponenko and H. V. Demir, Applied Nanophotonics, Cambridge University Press, Cambridge (2018).

    Book  Google Scholar 

  30. S. V. Gaponenko and D. V. Guzatov, Proc. IEEE, 108, 704–720 (2020).

    Article  Google Scholar 

  31. O. Kulakovich, N. Strekal, M. Artemyev, A. Stupak, S. Maskevich, and S. Gaponenko, Nanotechnology, 17, No. 20, 5201–5206 (2006).

    Article  ADS  Google Scholar 

  32. O. S. Kulakovich, N. D. Strekal′, M. V. Artem′ev, A. P. Stupak, S. A. Maskevich, and S. V. Gaponenko, J. Appl. Spectrosc., 73, 892–896 (2006).

    Article  ADS  Google Scholar 

  33. P. Anger, P. Bharadwaj, and L. Novotny, Phys. Rev. Lett., 96, No. 11, Article ID 113002 (2006).

  34. D. V. Guzatov, S. V. Gaponenko, and H. V. Demir, Z. Phys. Chem., 232, Nos. 9–11, 1431–1441 (2018).

    Google Scholar 

  35. M. H. Chowdhury, K. Ray, S. K. Gray, J. Pond, and J. R. Lakowicz, Analyt. Chem., 81, No. 4, 1397–1403 (2009).

    Article  Google Scholar 

  36. A. A. Lizunova, D. Malo, D. V. Guzatov, I. S. Vlasov, E. I. Kameneva, I. A. Shuklov, M. N. Urazov,A. A. Ramanenka, and V. V. Ivanov, Nanomaterials, 12, No. 22, 4051 (2022).

    Article  Google Scholar 

  37. L. Trotsiuk, A. Muravitskaya, O. Kulakovich, D. Guzatov, A. Ramanenka, Y. Kelestemur, H. V. Demir, and S. Gaponenko, Nanotechnology, 31, No. 10, Article ID 105201 (2019).

  38. Y. Chen, K. Munechika, I. Jen-La Plante, A. M. Munro, S. E. Skrabalak, Y. Xia, and D. S. Ginger, Appl. Phys. Lett., 93, Article ID 053106 (2008).

  39. O. Kulakovich, L. Gurinovich, Hui Li, A. Ramanenka, L. Trotsiuk, A. Muravitskaya, J. Wei, Hongbo Li, N. Matveevskaya, D. Guzatov, and S. Gaponenko, Nanotechnology, 32, No. 3, Article ID 035204 (2020).

  40. I. V. Koktysh, Ya. I. Melnikova, O. S. Kulakovich, A. A. Ramanenka, S. V. Vaschenko, A. O. Muravitskaya, S. V. Gaponenko, and S. A. Maskevich, J. Appl. Spectrosc., 87, 870–876 (2020).

    Article  ADS  Google Scholar 

  41. Z. W. Lei, M. Liu, W. Ge, X. F. Yang, J. F. Chen, and Y. Lu, J. Lumin., 206, 359–363 (2020).

    Article  Google Scholar 

  42. A. Muravitskaya, O. Kulakovich, P. M. Adam, and S. Gaponenko, Phys. Status Solidi (b), 255, No. 4, Article ID 1700491 (2018).

  43. S. Vaschenko, A. Ramanenka, O. Kulakovich, A. Muravitskaya, D. Guzatov, A. Lunevich, Y. F. Glukhov, and S. Gaponenko, Proc. Eng., 140, 57–66 (2016).

    Article  Google Scholar 

  44. N. Strekal, O. Kulakovich, V. Askirka, I. Sveklo, and S. Maskevich, Plasmonics, 4, No. 1, 1–7 (2009).

    Article  Google Scholar 

  45. R. I. Nooney, O. Stranik, C. McDonagh, and B. D. MacCraith, Langmuir, 24, No. 19, Article ID 11261 (2008).

  46. https://patents.google.com/patent/US8318087B2/en. Date of access: 14.03.2023.

  47. P. C. Lee and D. Meisel, J. Phys. Chem., 86, 3391–3395 (1982).

    Article  Google Scholar 

  48. O. Kulakovich, A. Scherbovich, I. Koktysh, Y. Melnikova, A. Ramanenka, S. Gaponenko, and S. Maskevich, Z. Phys. Chem., 236, Nos. 11–12, 1603–1615 (2022).

    Google Scholar 

  49. C. Hirtz, J. Vialaret, A. Gabelle, N. Nowak, Y. Dauvilliers, and S. Lehmann, Sci Rep., 6, Article ID 25162 (2016).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Kulakovich.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 90, No. 3, pp. 447–455, May–June, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulakovich, O.S., Gaponenko, S.V. & Guzatov, D.V. Metal–Dielectric Nanostructures for Enhancement of Molecular Fluorescence. J Appl Spectrosc 90, 567–575 (2023). https://doi.org/10.1007/s10812-023-01567-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-023-01567-x

Keywords

Navigation