Skip to main content

Advertisement

Log in

Effect of the Introduction of a Chlorine Atom into the Aromatic Fragment of the 1,3-Diketone Ligand on the Luminescence Efficiency of Novel Eu3+ Ion Coordination Compounds

  • Published:
Journal of Applied Spectroscopy Aims and scope

A study was carried out on the effect of a heavy chlorine atom introduced into the aromatic fragment of a 1,3-diketone ligand in Eu3+ coordination compounds on the spectral and luminescent properties of complex compounds. The data obtained from the absorption, optical excitation, fluorescence, and phosphorescence spectra as well as from the kinetics of the luminescence intensity permit estimation of the efficiency of energy transfer processes within the compounds studied. Introduction of a heavy chlorine atom was found to raise the energy of the first excited singlet state from 24,500 to 26,000 cm–1 but not affect the energy of the triplet level of the ligand. Furthermore, introduction of a chlorine atom leads to a decrease in the nonradiative relaxation constant (from 1290 to 840 s–1) and thereby triples the luminescence quantum yield from 23 to 64%. Hence, a new approach for the rational construction of useful coordination compounds of Eu3+ ions with 1,3-diketone ligands has been developed consisting of the substitution of a hydrogen atom by a heavy chlorine atom in the aromatic fragment of the ligand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. A. Kordeyro-Magrino, V. M. Korshunov, K. A. Lyssenko, V. E. Gontcharenko, Yu. A. Belousov, C. Pettinari, and I. V. Taydakov, Inorg. Chim. Acta, 510, Article ID 119764 (2020).

  2. J.C. G. Buenzli, Coord. Chem. Rev., 293, 19–47 (2015).

    Article  Google Scholar 

  3. K. Binnemans, Coord. Chem. Rev., 295, 1–45 (2015).

    Article  Google Scholar 

  4. S. I. Weissman, J. Chem. Phys., 10, No. 4, 214–217 (1942).

    Article  ADS  Google Scholar 

  5. V. M. Korshunov, A. V. Tsorieva, V. E. Gontcharenko, S. R. Zanizdra, M. T. Metlin, T. A. Polikovskiy, and I. V. Taydakov, Inorganics, 11, No. 1, 15 (1023).

  6. F.-F. Chen, Z.-Q. Chen, Z.-Q. Bian, and C.-H. Huang, Coord. Chem. Rev., 254, Nos. 9–10, 991–1010 (2010).

    Article  Google Scholar 

  7. A. R. Willauer, I. Douair, A.-S. Chauvin, F. Fadaei-Tirani, J.-C. G. Bünzli, L. Maron, and M. Mazzanti, Chem. Sci., 13, No. 3, 681–691 (2022).

    Article  Google Scholar 

  8. F. Marchetti, R. Pettinari, and C. Pettinari, Coord. Chem. Rev., 303, 1–31 (2015).

    Article  Google Scholar 

  9. F. Marchetti, C. Pettinari, A. Di Nicola, A. Tombesi, and R. Pettinari, Coord. Chem. Rev., 401, Article ID 213069 (2019).

  10. E. A. Varaksina, M. A. Kiskin, K. A. Lyssenko, L. N. Puntus, V. M. Korshunov, G. S. Silva, R. O. Freire, and I. V. Taydakov, Phys. Chem. Chem. Phys., 23, No. 45, 25748–25760 (2021).

    Article  Google Scholar 

  11. H. Xu, L.-H. Wang, X.-H. Zhu, K. Yin, G. Y. Zhang, X.-Y. Hou, and W. Huang, J. Phys. Chem. B, 110, 3023–3029 (2006).

    Article  Google Scholar 

  12. K. Binnemans, Handbook on the Physics and Chemistry of Rare Earths, Katholicke Universiteit Leuven, Department of Chemistry 200F, B3001 Leuven, Belgium, Elsevier (2005), pp. 107–272.

    Google Scholar 

  13. M. Latva, M. Takalo, V.-M. Makkala, C. Matachescu, J. C. Rodriguez-Ubis, and J. Kankare, J. Lumin., 75, No. 2, 149–169 (1997).

    Article  Google Scholar 

  14. L. V. Taydakov, B. E. Zaitsev, S. S. Krasnoselskiy, and Z. A. Starikova, J. Rare Earths, 29, 719–722 (2011).

    Article  Google Scholar 

  15. D. Singh, S. Bhagwan, A. Dalal, K. Nehra, R. Kumar Salni, K. Singh, S. Kumar, and L. Singh, J. Lumin., 223, Article ID 117255 (2020).

  16. E. A. Varaksina, I. V. Taydakov, S. A. Amrozevich, A. S. Selyukov, K. A. Lyssenko, L. T. Jesus, and R. O. Freire, J. Lumin., 196, 161–168 (2018).

    Article  Google Scholar 

  17. M. T. Metlin, D. O. Goryachil, D. F. Aminev, N. P. Datskevich, V. M. Korshunov, D. A. Metlina, A. A. Pavlov, I. V. Mikhalchenko, M. A. Kiskin, V. V. Garaeva, and I. V. Taydakov, Dyes Pigments, 195, Article ID 109701 (2021).

  18. V. V. Sivchik, A. I. Solomatina, Y.-T. Chen, A. J. Karttunen, S. P. Tunik, P. T. Chou, and I. O. Koshevoy, Angew. Chemie, 127, No. 47, 14261–14266 (2 015).

  19. W. Franek, Monatshefte für Chemie/Chemical Monthly, 127, 895–907 (1996).

    Article  Google Scholar 

  20. P. Hänninen and H. Härmä, Lanthanide Luminescence: Photophysical, Analytical and Biological Aspects, University of Turku, Department of Cell Biology and Anatomy, 20520 Turku, Finland, Springer-Verlag, Berlin–Heidelberg (2011), pp. 264–273.

    Book  Google Scholar 

  21. H.-F. Li, G.-M. Li, P. Chen, W.-B. Sun, and P.-F. Yan, Spectrochim. Acta A: Mol. Biol. Spectr., 97, 197–201 (2012).

    Article  ADS  Google Scholar 

  22. J. C. G. Bünzli, Eur. J. Inorg. Chem., 44, 5058–5063 (2017).

    Article  Google Scholar 

  23. L. N. Puntus, A.S. Chauvin, and J.-C. G. Bünzli, Eur. J. Inorg. Chem., 16, 2315–2326 (2017).

    Google Scholar 

  24. A. Beeby, L. M. Clarkson, R. S. Dickins, S. Faulkner, D. Parker, L. Royle, A. S. de Sousa, J. A. Gareth Williams, and M. Woods, J. Chem. Soc., Perkin Trans., 2, 493–503 (1999).

  25. M. P. Oude Wolbers, F. C. J. M. van Veggel, B. H. M. Snellink-Rul, J. W. Hofstraat, F. A. J. Geurts, and D. N. Reinhoudt, J. Am. Chem. Soc., 119, No. 1, 138–144 (1997).

  26. K. M. F. Shahil and A. A. Balandin, Nano Lett., 2, 861–867 (2012).

    Article  ADS  Google Scholar 

  27. M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, and L. Novotny, Phys. Rev. Lett., 114, Article ID 163190 (2015).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Tsorieva.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 90, No. 2, pp. 230–238, March–April, 2023. https://doi.org/10.47612/05147506-2023902230238.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsorieva, A.V., Polikovskiy, T.A., Metlin, M.T. et al. Effect of the Introduction of a Chlorine Atom into the Aromatic Fragment of the 1,3-Diketone Ligand on the Luminescence Efficiency of Novel Eu3+ Ion Coordination Compounds. J Appl Spectrosc 90, 325–333 (2023). https://doi.org/10.1007/s10812-023-01539-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-023-01539-1

Keywords

Navigation