Skip to main content
Log in

Nanosensor Composed of N-Doped Carbon Dots for Highly Selective Detection of Riboflavin

  • Published:
Journal of Applied Spectroscopy Aims and scope

Boletus brunneissimus Chiu carbon dots (Bb-CDs) with good fluorescence performance were successfully prepared by the hydrothermal method (200°C, 12 h) using the edible fungus Boletus brunneissimus Chiu as the carbon source. The Bb-CD fluorescent nanoprobe was applied to detection of riboflavin, and its fluorescence-quenching mechanism was investigated. The structure and optical properties of the Bb-CDs were characterized by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and ultraviolet-visible spectroscopy. In the riboflavin concentration (C) range of 0–50 μM, the fluorescence-quenching effect of the Bb-CDs (y) showed a good linear relationship with the riboflavin concentration. The linear equation was y = 0.00304C + 0.02151 (R2 = 0.99497), and the detection limit was 45 nM. Therefore, the Bb-CDs showed high detection sensitivity and a low detection limit for riboflavin. Moreover, the fluorescence-quenching mechanism of the Bb-CDs by riboflavin belonged to the fluorescent inner filter effect. The Bb-CDs were successfully used as a fluorescent nanoprobe to detect riboflavin in actual fruit samples, which provides a new concept for application of CDs to biological detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Zhang, M. Jiang, N. Niu, et al., ChemSusChem, 11, No. 1, 11–24 (2018).

    Article  ADS  Google Scholar 

  2. L. Zheng, Y. Chi, Y. Dong, et al., J. Am. Chem. Soc., 131, No. 13, 4564–4565 (2009).

    Article  Google Scholar 

  3. A. B. Bourlinos and D. Petridis, J. Mater. Sci., 38, No. 5, 959–963 (2003).

    Article  ADS  Google Scholar 

  4. Y. Ding, J. Zheng, J. Wang, et al., J. Mater. Chem. C, 7, No. 6, 1502–1509 (2019).

    Article  Google Scholar 

  5. Q. Yang, J. Duan, W. Yang, et al., Appl. Surf. Sci., 1079–1085 (2018).

  6. J. B. Essner, J. A. Kist, L. Polo-Parada, et al., Chem. Mater., 30, No. 6, 1878–1887 (2018).

    Article  Google Scholar 

  7. J. Zhu, H. Shao, X. Bai, et al., Nanotechnology, 29, No. 24, Article ID 245702 (2018).

  8. K. P. Ji, Y. Cao, C. X. Zhang, et al., Mycologic. Prog., 10, 293–300 (2011).

    Article  Google Scholar 

  9. C. X. Zhang, M. X. He, Y. Cao, et al., Mycologia, 107, No. 1, 12–20 (2015).

    Article  Google Scholar 

  10. R. Sanmee, B. Dell, P. Lumyong, et al., Food Chem., 82, No. 4, 527–532 (2003).

    Article  Google Scholar 

  11. P. Heinemann and J. Rammeloo, Mycotaxon, 15, 384–404 (1982).

    Google Scholar 

  12. R. Wading, Mycologic. Res., 105, No. 12, 1440–1448 (2001).

    Article  ADS  Google Scholar 

  13. V. M. Bandala, L. Montoya, and D. Jarvio, Persoonia, 18, No. 3, 365–380 (2004).

    Google Scholar 

  14. P. S. Barbara, New Zealand J. Botany, 25, No. 2, 185–215 (1987).

    Article  Google Scholar 

  15. Z. Sun, X. Li, Y. Wu, et al., New J. Chem., 42, No. 6, 4603–4611 (2018).

    Article  Google Scholar 

  16. F. Yuan, T. Yuan, L. Sui, et al., Nat. Commun., 9, No. 1, 1–11 (2018).

    Article  ADS  Google Scholar 

  17. K. Jiang, Y. Wang, X. Gao, et al., Angew. Chem. Int. Ed., 57, No. 21, 6216–6220 (2018).

    Article  Google Scholar 

  18. Z. Wei, B. Wang, Y. Liu, et al., New J. Chem., 43, No. 2, 718–723 (2019).

    Article  Google Scholar 

  19. K. Kim and J. Kim, J. Nanosci. Nanotechnol., 18, No. 2, 1320–1322 (2018).

    Article  Google Scholar 

  20. L. Liu, H. Gong, D. Li, et al., J. Nanosci. Nanotechnol., 18, No. 8, 5327–5332 (2018).

    Article  Google Scholar 

  21. R. Atchudan, T. N. J. I. Edison, K. R. Aseer, et al., Biosens. Bioelectron., 99, 303–311 (2018).

    Article  Google Scholar 

  22. B. T. Hoan, P. D. Tam, and V. H. Pham, J. Nanotechnol. (2019).

  23. Y. Song, X. Yan, Z. Li, et al., J. Mater. Chem. B, 6, No. 19, 3181–3187 (2018).

    Article  Google Scholar 

  24. A. K. Singh, V. K. Singh, M. Singh, et al., J. Photochem. Photobiol. A: Chem., 376, 63–72 (2019).

    Article  Google Scholar 

  25. M. Shahshahanipour, B. Rezaei, A. A. Ensafi, et al., Mater. Sci. Eng. C, 98, 826–833 (2019).

    Article  Google Scholar 

  26. S. K. Bajpai, A. D'Souza, and B. Suhail, Int. Nano Lett., 9, No. 3, 203–212 (2019).

    Article  Google Scholar 

  27. S. Nandi, M. Ritenberg, and R. Jelinek, Analyst, 140, No. 12, 4232–4237 (2015).

    Article  ADS  Google Scholar 

  28. W. Gao, S. Thamphiwatana, P. Angsantikul, et al., WIREs Nanomed. Nanobiotechnol., 6, No. 6, 532–547 (2014).

    Article  Google Scholar 

  29. A. Rodriguez-Rojas, J. Rodriguez-Beltran, A. Couce, and J. Blázquez, Int. J. Med. Microbiol., 303, Nos. 6–7, 293–297 (2013).

    Article  Google Scholar 

  30. L. Xiao and H. Sun, Nanoscale Horizons, 3, No. 6, 565–597 (2018).

    Article  ADS  Google Scholar 

  31. H. Ding, J.-S. Wei, N. Zhong, et al., Langmuir, 33, No. 44, 12635–12642 (2017).

    Article  Google Scholar 

  32. V. Sharma, P. Tiwari, and S. M. Mobin, J. Mater. Chem. B, 5, No. 45, 8904–8924 (2014).

    Article  Google Scholar 

  33. L. Wang and H. S. Zhou, Anal. Chem., 86, No. 18, 8902–8905 (2014).

    Article  Google Scholar 

  34. D. B. Mccormick, Nutr. Rev., 30, No. 4, 75–79 (1972).

    Article  Google Scholar 

  35. M. Kilic and B. Ensing, Phys. Chem. Chem. Phys., 16, No. 35, 18993–19000 (2014).

    Article  Google Scholar 

  36. C. J. Bates, A. M. Prentice, A. A. Paul, et al., Trans. Roy. Soc. Trop. Med. Hyg., 76, No. 2, 253–258 (1982).

    Article  Google Scholar 

  37. P. A. Prasad, M. S. Bamji, A. V. Lakshmi, et al., Nutr. Res., 10, No. 3, 275–281 (1990).

    Article  Google Scholar 

  38. M. J. Soares, K. Satyanarayana, M. S. Bamji, et al., Br. J. Nutr., 69, No. 2, 541–551 (1993).

    Article  Google Scholar 

  39. J. Chen, B. Q. Li, Y. Q. Cui, et al., J. Food Compos. Anal., 41, 122–128 (2015).

    Article  Google Scholar 

  40. I. Márqucz-Sillero, S. Cárdenas, and M. Valcárcel, J. Chromatogr. A, 1313, 253–258 (2013).

    Article  Google Scholar 

  41. J. Eiff, Y. B. Monakhova, and B. Diehl, J. Agric. Food Chem., 63, No. 12, 3135–3143 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifen Meng.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 89, No. 6, p. 904, November–December, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, L., Xia, Z., Zhang, Y. et al. Nanosensor Composed of N-Doped Carbon Dots for Highly Selective Detection of Riboflavin. J Appl Spectrosc 89, 1212–1219 (2023). https://doi.org/10.1007/s10812-023-01488-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-023-01488-9

Keywords

Navigation