Skip to main content
Log in

Design of a Fluorescence-Enhanced Aptasensor for Sensitive Detection of Silver Ions

  • Published:
Journal of Applied Spectroscopy Aims and scope

A highly sensitive fluorescence-enhanced aptasensor was designed to detect silver ions (Ag+) using metal-enhanced fluorescence. Interaction of Ag+ with cytosine nucleobases was used to achieve a low detection limit. Aptamer-modified gold nanoparticles (Au NPs) were mixed with 6-carboxyfluorescein (FAM)-labeled DNA to prepare the sensor. In a solution without Ag+, aptamer and FAM-labeled DNA strands remained free because of repulsion between cytosine. In the presence of Ag+, pairs of aptamer and FAM-labeled DNA strands formed double helices through cytosine–Ag+– cytosine interactions. These interactions brought FAM close to the Au NPs. The number of adenines repeats in the aptamer was altered to adjust the distance between the Au NPs and FAM, and provide controllable localized surface plasmon resonance. With the optimum number of adenine repeats (n = 24), the linear range for detection of Ag+ was 0.694 to 6.94 nmol/L and the detection limit was 0.694 nmol/L. The aptasensor showed excellent specificity and gave a strong detection signal for Ag+ present at trace concentrations to overcome issues associated with the detection of weak signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. C. Wu, K. Jiang, S. H. Luo, L. Cao, and H. Q. Wu, Spectrochim. Acta A, 206, 632–641 (2019).

  2. Y. G. Ko, W. S. Na, N. Singh, and D. O. Jang, J. Fluoresc., 29, No. 4, 945–952 (2019).

  3. Q. Long, Y. Q. Wen, H. T. Li, Y. Y. Zhang, and S. Z. Yao, J. Fluoresc., 27, No. 1, 205–211 (2017).

  4. Y. Lu, L. J. Meng, Y. Gao, D. L. Liao, and Y. X. Li, Anal. Biochem., 549, 21–25 (2018).

  5. Y. W. Zhang, A. Y. Ye, Y. W. Yao, and C. Yao, Sensors (Basel), 19, No. 2, 247–249 (2019).

  6. J. W. Qi, Z. Q. Chen, J. Chen, Y. D. Li, and W. Qiang, Opt. Express., 22, No. 12, 14688–14695 (2014).

  7. Y. F. Zhu, Y. S. Wang, B. Zhou, Y. Q. Huang, and X. J. Li, Spectrochim. Acta A, 189, 190–194 (2018).

  8. Z. Y. Chu, W. N. Wang, C. Y. Zhang, J. Ruan, and B. J. Chen, Chem. Eng. J., 375, Article ID 121927 (2019).

  9. L. C. Shi, J. S. Hu, X. F. Wu, S. P. Zhan, S. G. Hu, and Z. G. Tang, Dalton. T., 47, No. 46, 16445–16452 (2018).

  10. D. D. Tan, Y. He, X. J. Xing, Y. Zhao, H. W. Tang, and D. W. Pang, Talanta, 113, 26–30 (2013).

  11. T. H. Nguyen, S. P. Wren, T. Sun, and K. T. V. Grattan, TIEEE Sens. J., 20, 480–482 (2016).

  12. N. D. Acha, C. Elosua, J. M. Corres, and F. J. Arregui, Sensors (Basel), 19, 599, 1–34 (2019).

  13. J. Ding, H. Y. Li, C. Wang, J. Yang, Y. J. Xie, ACS Appl. Mater. Inter., 7, No. 21, 11369–11376 (2015).

  14. W. Xu, C. L. Ren, C. L. Teoh, J. J. Peng, and S. H. Gadre, Anal. Chem., 86, No. 17, 8763–8769 (2014).

  15. Z. Jiao, P. F. Zhang, H. W. Chen, C. Li, and L. Chen, Sens. Actuators B Chem., 295, 110–116 (2019).

  16. R. R. Gaddam, D. Vasudevan, R. Narayan, and K. V. Raju, RSC Adv., 100, No. 4, 57137–57143 (2014).

  17. F. Yarur, J. R. Macairan, and R. Naccache, Environ. Sci-Nano., 6, No. 4, 1121–1130 (2019).

  18. F. Firdaus, A. Farhi, M. Faraz, and M. Shakir, J. Lumin., 199, 475–482 (2018).

  19. Z. P. Zhou, H. D. Huang, Y. Chen, F. Liu, and C. Z. Huang, Biosens. Bioelectron., 52, 367–373 (2014).

  20. H. B. Teh, H. N. Wu, X. B. Zuo, and S. F. Y. Li, Sens. Actuators B Chem., 195, 623–629 (2014).

  21. N. Sui, L. Wang, T. F. Yan, F. Y. Liu, and J. Sui, Sens. Actuators B Chem., 202, 1148–1153 (2014).

  22. J. F. Lodeiro, C. Nunez, A. F. Lodeiro, E. Oliveira, and C. Lodeiro, Nanopart. Res., 16, No. 3, 1–12 (2014).

  23. J. J. Peng, J. Y. Li, Nunez, W. Xu, L. Wang, and D. D. Su, Anal. Chem., 90, No. 3, 1628–1634 (2018).

  24. G. Aragay, G. Alarcon, J. Pons, and A. Merkoci, J. Phys. Chem. C, 116, No. 2, 1987–1994 (2012).

  25. W. W. Qin, W. Dou, V. Leen, W. Dehaen, M. V. Auweraer, and N. Boens, RSC Adv., 6, No. 10, 7806–7816 (2016).

  26. S. S. Bayram, P. Green, and A. S. Blum, Spectrochim. Acta A, 195, 21–24 (2018).

  27. R. R. Kayumova, S. A. Peshkov, S. S. Ostakhov, and S. L. Khursan, High. Energ. Chem., 51, No. 1, 75–77 (2017).

  28. Y. Miyake, H. Togashi, M. Tashiro, and S. L. Khursan, J. Am. Chem. Soc., 128, No. 7, 2172–2173 (2006).

  29. W. H. Zhou, R. Saran, and J. Liu, Chem. Rev., 117, No. 12, 8272–8325 (2017).

  30. X. Wei, H. Li, Z. H. Li, M. Vuki, and Y. Fan, Anal. Bioanal. Chem., 402, No. 3, 1057–1063 (2012).

  31. C. W. Liu, C. C. Huang, and H. T. Chang, Langmuir., 24, No. 15, 8346–8350 (2008).

  32. Y. F. Pang, Z. Rong, R. Xiao, and S. Q. Wang, Sci. Rep. UK, 5, No. 1, 1–8 (2015).

  33. G. K. Wang, C. W. Shao, C. L. Yan, D. Li, and Y. F. Liu, J. Lumin., 210, 21–27(2019).

  34. L. D. Lavis, T. J. Rutkoski, and R. T. Raines, Sci. Anal. Chem., 79, No. 17, 6775–6782 (2007).

  35. J. C. Jin, B. B. Wang, Z. Q. Xu, X. H. He, H. F. Zou, Q. Q. Yang, F. L. Jiang, and Y. Liu, Sens. Actuators B Chem., 267, 627–635 (2018).

  36. B. Azizi, K. Farhadi, and N. Samadi, J. Anal. Chem., 75, No. 12, 1546–1553 (2020).

  37. G. P. Yan, Y. H. Wang, X. X. He, K. M. Wang, J. Su, Z. F. Chen, and Z. H. Qing, Talanta, 94, 178–183 (2012).

  38. Y. H. Lin and W. L. Teng, Chem. Commun., 43, 6619–6621 (2009).

  39. X. H. Gao, Y. Z. Lu, R. Z. Zhang, S. J. He, J. Ju, M. M. Liu, L. Li, and W. Chen, J. Mater. Chem. C, 3, No. 10, 2302–2309 (2015).

  40. J. Lee, J. Park, H. H. Lee, H. Park, H. I. Kim, and W. J. Kim, Biosens. Bioelectron., 68, 642–647(2015).

  41. Y. Yang, T. Liu, L. Cheng, G. S. Song, Z. Liu, and M. W. Chen, ACS Appl. Mater. Interfaces, 7, No. 14, 7526–7533 (2015).

  42. H. Li, S. Ye, J. Q. Guo, H. B. Wang, W. Yan, J. Song, and J. Qu, Nano Res., 12, 3075–3084 (2019).

  43. J. Q. Guo, S. Ye, H. Li, J. Song, and J. Qu, Dyes. Pigment, 183, Article ID 108723 (2020).

  44. J. Wang, A. Y. Liu, B. C. Wu, Q. L. Wen, Z. F. Pu, R. X. Zhao, J. Ling, and Q. Cao, Anal. Methods, 13, No. 18, 2099–2106 (2021).

  45. Z. F. Pu, J. Peng, Q. L. Wen, Y. Li, J. Ling, P. Liu, and Q. E. Cao, Dyes Pigment, 193, Article ID 109533 (2021).

  46. T. Khantaw, C. Boonmee, T. Tuntulani, and W. Ngeontae, Talanta, 115, 849–856 (2013).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Jiang.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 89, No. 5, p. 745, September–October, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, L., Chen, G., Peng, Z. et al. Design of a Fluorescence-Enhanced Aptasensor for Sensitive Detection of Silver Ions. J Appl Spectrosc 89, 984–991 (2022). https://doi.org/10.1007/s10812-022-01457-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-022-01457-8

Keywords

Navigation