Skip to main content
Log in

Raman Spectra of Silicon/Germanium Alloy Thin Films Based on Porous Silicon

  • Published:
Journal of Applied Spectroscopy Aims and scope

Regularities of composition changes of silicon/germanium alloy thin films formed on a single-crystalline silicon substrate by electrochemical deposition of germanium into a porous silicon matrix with subsequent rapid thermal annealing (RTA) at temperatures of 750–950°C are studied. An analysis of the samples by Raman spectroscopy showed that an increase of the RTA temperature leads to a decrease in the germanium concentration in the formed film. A decrease of the RTA duration at a given temperature makes it possible to obtain films with a higher germanium concentration and to control the composition of thin silicon/germanium alloy films formed by changing the RTA temperature and duration. The obtained results on controlling the composition of silicon/germanium alloy films can be used to create functional electronic devices, thermoelectric power converters, and optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Shiraki and N. Usami, Silicon–Germanium (SiGe) Nanostructures: Production, Properties and Applications in Electronics, Woodhead Publishing, Cambridge (2011), pp. 3–25.

    Book  Google Scholar 

  2. L. Vegard, Z. Phys., 5, 17–26 (1920).

    Article  ADS  Google Scholar 

  3. J. P. Dismukes, L. Ekstrom, and R. J. Pfaff , J. Phys. Chem., 68, 3021–3027 (1964).

    Article  Google Scholar 

  4. N. M. Ravindra, B. Jariwala, A. Banobre, and A. Maske, Thermoelectrics: Fundamentals, Materials Selection, Properties, and Performance, Springer, Cham (2019), pp. 49–67.

    Google Scholar 

  5. V. I. Talanin, New Research on Silicon — Structure, Properties, Technology, IntechOpen, London (2017), pp. 84–101.

  6. D. Benedikovic, L. Virot, G. Aubin, J.-M. Hartmann, F. Amar, X. Le Roux, C. Alonso-Ramos, E. Cassan, D. Marris-Morini, J.-M. Fedeli, F. Boeuf, B. Szelag, and L. Vivien, Nanophotonics, 10, 1059–1079 (2021).

    Article  Google Scholar 

  7. X. Zhang and L.-D. Zhao, J. Materiomics, 1, 92–105 (2015).

    Article  Google Scholar 

  8. I. M. Gavrilin, N. L. Grevtsov, A. V. Pavlikov, A. A. Dronov, E. B. Chubenko, V. P. Bondarenko, and S. A. Gavrilov, Mater. Lett., 313, Article ID 131802 (2022).

  9. E. Fahrenkrug, J. Biehl, and S. Maldonado, Chem. Mater., 27, 3389–3396 (2015).

    Article  Google Scholar 

  10. I. M. Gavrilin, D. G. Gromov, A. A. Dronov, S. V. Dubkov, R. L. Volkov, A. Yu. Trifonov, N. I. Borgardt, and S. A. Gavrilov, Semiconductors, 51, 1067–1071 (2017).

    Article  ADS  Google Scholar 

  11. S. Acharya, L. Ma, and S. Maldonado, ACS Appl. Nano Mater., 1, 5553–5561 (2018).

    Article  Google Scholar 

  12. Q. Cheek, E. Fahrenkrug, S. Hlynchuk, D. H. Alsem, N. J. Salmon, and S. Maldonado, ACS Nano, 14, 2869–2879 (2020).

    Article  Google Scholar 

  13. R. Schwarz, F. Heinrich, and E. Hollstein, Z. Anorg. Allg. Chem., 229, 146 (1936).

    Article  Google Scholar 

  14. C. G. Fink and V. M. Dokras, J. Electrochem. Soc., 95, 80–97 (1949).

    Article  Google Scholar 

  15. N. Brinda-Konopik and G. Schade, Electrochim. Acta, 25, 697–701 (1980).

    Article  Google Scholar 

  16. R. K. Pandey, S. N. Sahu, and S. Chandra, Handbook of Semiconductor Deposition, Marcel Dekker Inc., New York (1996), pp. 201–203.

    Google Scholar 

  17. N. Chandrasekharan and S. C. Sevov, J. Electrochem. Soc., 157, C140–C145 (2010).

    Article  Google Scholar 

  18. L. K. van Vugt, A. F. van Driel, R. W. Tjerkstra, L. Bechger, W. L. Vos, D. Vanmaekelbergh, and J. J. Kelly, Chem. Commun., 2002, 2054–2055 (2002).

    Article  Google Scholar 

  19. E. B. Chubenko, S. V. Redko, A. I. Sherstnyov, V. A. Petrovich, D. A. Kotov, and V. P. Bondarenko, Semiconductors, 50, 372–376 (2016).

    Article  ADS  Google Scholar 

  20. K.-H. Li, C. Tsai, S. Shih, T. Hsu, D. L. Kwong, and J. C. Campbell, J. Appl. Phys., 72, 3816–3817 (1992).

    Article  ADS  Google Scholar 

  21. I. P. Herman, Optical Diagnostics for Thin Film Processing, Academic Press, San Diego (1996), pp. 559–590.

    Book  Google Scholar 

  22. J. H. Parker, D. W. Feldman, and M. Ashkin, Phys. Rev., 155, 712–714 (1967).

  23. A. Shklyaev, V. A. Volodin, M. Stoffel, H. Rinnert, and M. Vergnat, J. Appl. Phys., 123, Article ID 015304 (2018).

  24. M. I. Alonso and K. Winer, Phys. Rev. B: Condens. Matter, 39, 10056–10062 (1989).

    Article  ADS  Google Scholar 

  25. P. M. Mooney, F. H. Dacol, J. C. Tsang, and J. O. Chu, Appl. Phys. Lett., 62, 2069–2071 (1993).

    Article  ADS  Google Scholar 

  26. F. Pezzoli, E. Bonera, E. Grilli, M. Guzzi, S. Sanguinetti, D. Chrastina, G. Isella, H. von Kanel, E. Wintersberger, J. Stangl, and G. Bauer, Mater. Sci. Semicond. Process., 11, 279–284 (2008).

    Article  Google Scholar 

  27. V. I. Korepanov and D. M. Sedlovets, Analyst, 143, 2674–2679 (2018).

    Article  ADS  Google Scholar 

  28. Y. Gao and P. Yin, Sci. Rep., 7, Article ID 43602 (2017).

  29. S. A. Mala, L. Tsybeskov, D. J. Lockwood, X. Wu, and J.-M. Baribeau, J. Appl. Phys., 116, Article ID 014305 (2014).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. B. Chubenko.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 89, No. 5, pp. 614–620, September–October, 2022. https://doi.org/10.47612/0514-7506-2022-89-5-614-620.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chubenko, E.B., Grevtsov, N.L., Bondarenko, V.P. et al. Raman Spectra of Silicon/Germanium Alloy Thin Films Based on Porous Silicon. J Appl Spectrosc 89, 829–834 (2022). https://doi.org/10.1007/s10812-022-01432-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-022-01432-3

Keywords

Navigation