Skip to main content
Log in

IR Transmittance of Si/SiO2/Si3N4/Si Insular Structures Formed by Selective Laser Annealing

  • Published:
Journal of Applied Spectroscopy Aims and scope

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Periodic Si/SiO2/Si3N4/Si structures with an insular surface layer were formed by selective laser annealing. A study by Fourier infrared spectrometry in the range 2–25 μm showed a decrease in the transmittance of the insular structure formed by selective laser annealing as compared to the structure without annealing. The decrease in the transmittance coefficient may have been due to heavily doped regions of recrystallized silicon in the surface layer. An analysis of dispersion curves obtained by finite-difference time-domain (FDTD) modeling showed that 5–20-THz plasma-like oscillations could be supported in a layer of periodic highly doped silicon islands in a layer of undoped silicon. The study results were interpreted assuming that plasma-like oscillations (spoof surface plasmons) arose in the structure with an insular surface layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. L. Tan and H. Mohseni, Nanophotonics, 7, No. 1, 169–197 (2018).

    Article  Google Scholar 

  2. F. F. Komarov, Ionic and Photonic Treatment of Materials [in Russian], BGU, Minsk (1998).

  3. G. A. Kachurin, S. G. Cherkova, V. A. Volodin, D. V. Marin, and M. Deutschmann, Fiz. Tekh. Poluprovodn., 42, No. 2, 181–186 (2008).

    Google Scholar 

  4. V. P. Voronkov and G. A. Gurchenok, Fiz. Tekh. Poluprovodn., 24, No. 10, 1831–1834 (1990).

    Google Scholar 

  5. A. I. Mukhammad, K. V. Chizh, V. G. Plotnichenko, V. A. Yuryev, and P. I. Gaiduk, Semiconductors, 54, No. 14, 1889–1892 (2020).

    Article  ADS  Google Scholar 

  6. The Stopping and Range of Ions in Matter Software (SRIM); http://www.srim.org/ (accessed Oct. 2021).

  7. Nanophotonic FDTD Simulation Software, Lumerical FDTD; https://www.lumerical.com/products/fdtd/ (accessed Jan. 2020).

  8. E. D. Palik, Handbook of Optical Constants of Solids, Vol. 2, Academic Press (1985).

  9. J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmuller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, and W. T. Masselink, Appl. Opt., 51, No. 28, 6789–6798 (2012).

  10. S. A. Maier, Plasmonics: Fundamentals and Applications, Springer Science + Business Media, New York (2007).

    Book  Google Scholar 

  11. B. Luk′yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, Nat. Mater., 9, 707–715 (2010).

    Article  ADS  Google Scholar 

  12. A. V. Dvurechenskii, G. A. Kachurin, E. V. Nidaev, and L. S. Smirnov, Pulsed Annealing of Semiconducting Materials [in Russian], Nauka, Moscow (1982).

  13. R. Kitamura, L. Pilon, and M. Jonasz, Appl. Opt., 46, No. 33, 8118–8133 (2007).

    Article  ADS  Google Scholar 

  14. G. Busca, V. Lorenzelli, G. Porcile, M. I. Baraton, P. Quintard, and R. Marchand, Mater. Chem. Phys., 14, No. 2, 123–140 (1986).

    Article  Google Scholar 

  15. S. C. Shen and M. Cardona, J. Phys., Colloq., 42, No. C4, 349–351 (1981).

    Article  Google Scholar 

  16. M. Desouky, A. M. Mahmoud, and M. A. Swillam, Sci. Rep., 8, 2036 (2018).

    Article  ADS  Google Scholar 

  17. F. Peragut, L. Cerutti, A. Baranov, J. P. Hugonin, T. Taliercio, Y. De Wilde, and J. J. Greffet, Optica, 4, No. 11, 1409–1415 (2017).

  18. Y. Ra′di, C. R. Simovski, and S. A. Tretyakov, Phys. Rev. Appl., 3, 03700 (2015).

    Article  Google Scholar 

  19. Y. Chang, D. Hasan, B. Dong, J. Wei, Y. Ma, G. Zhou, K. Wee Ang, and C. Lee, ACS Appl. Mater. Interfaces, 10, 38272–38279 (2018).

  20. M. A. A. Abouelatta, M. A. Othman, M. Desouky, A. M. Mahmoud, and M. A. Swillam, Opt. Express, 29, No. 25, 41447–41456 (2021).

    Article  ADS  Google Scholar 

  21. X. Zhao, C. Chen, A. Li, G. Duan, and X. Zhang, Opt. Express, 27, No. 2, 1727–1739 (2019).

    Article  ADS  Google Scholar 

  22. А. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, Phys. Rev. Lett., 108, 223905 (2012).

  23. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, Science, 305, 847 (2004).

    Article  ADS  Google Scholar 

  24. P. Huidobro, A. Fernandez-Dominguez, J. Pendry, L. Martin-Moreno, and F. Garcia-Vidal, MRS Bull., 45, 318 (2020).

    Article  ADS  Google Scholar 

  25. A. Kianinejad, Z. N. Chen, and C. Qiu, IEEE Trans. Microwave Theory Tech., 63, No. 6, 1817–1825 (2015).

    Article  ADS  Google Scholar 

  26. A. Aigner, J. M. Dawes, S. A. Maier, and H. Ren, Light: Sci. Appl., 11, Art. No. 9, (2022); Art. No. 26 (correction) (2022).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Mukhammad.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 89, No. 4, pp. 511–518, July–August, 2022. https://doi.org/10.47612/0514-7506-2022-89-4-511-518.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukhammad, A.I., Gaiduk, P.I., Nalivaiko, O.Y. et al. IR Transmittance of Si/SiO2/Si3N4/Si Insular Structures Formed by Selective Laser Annealing. J Appl Spectrosc 89, 677–683 (2022). https://doi.org/10.1007/s10812-022-01411-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-022-01411-8

Keywords

Navigation