Skip to main content
Log in

Attenuated Total Reflection Spectra of Nitrided SiO2/Si Structures

  • Published:
Journal of Applied Spectroscopy Aims and scope

The behavior of nitrogen in silicon dioxide films on single-crystal silicon substrates was studied by attenuated total reflection (ATR) and time-of-flight secondary ion mass spectrometry. Nitrogen was introduced into a dielectric formed by pyrogenic oxidation at 850°C in an atmosphere of wet oxygen by implantation of N+ ions of energy 40 keV at doses of 2.5·1014 and 1.0·1015 cm–2 followed by rapid thermal annealing at 1000 or 1050°C for 15 s in air. Some of the samples were nitrided during thermal annealing in an N2 atmosphere with the addition of a small amount of O2 at 1200°C for 120 min. It was established that the majority of N atoms diff used during the heat treatments to the SiO2/Si interface and accumulated near the boundary region of the oxide. ATR spectra showed an absorption band with maxima at ~2320 and 2360 cm–1 that was probably due to vibrations of double cumulative bonds of the O=Si=N– type. These bonds formed through the interaction of N with dangling bonds at the Si-dielectric interface, as a result of which uncompensated or strained bonds were replaced by more stable ones. The resulting stronger chemical bonds prevented charge accumulation on the surface of the SiO2/Si interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. J. Baliga, Advanced Power MOSFET Concepts, Springer Science & Business Media (2010).

  2. V. B. Odzhaev, A. N. Petlitskii, V. S. Prosolovich, A. S. Turtsevich, S. V. Shvedov, V. A. Filipenya, V. V. Chernyi, V. Yu. Yavid, Yu. N. Yankovskii, and V. A. Dubrovskii, Vestsi Nats. Akad. Navuk Belarusi, Ser. Fiz.-Tekh. Navuk, No. 4, 4–17 (2014).

  3. J. A. Diniz, P. J. Tatsch, L. C. Kretly, J. E. C. Queiroz, and F. J. Godoy, Mat. Res. Soc. Symp. Proc., 396, 249–254 (1996).

    Article  Google Scholar 

  4. L. S. Adam, C. Bowen, and M. E. Law, IEEE Trans. Electron Devices, 50, No. 3, 589–600 (2003).

    Article  ADS  Google Scholar 

  5. G. Ya. Krasnikov, Design-Technological Features of Submicron MOS Transistors [in Russian], Tekhnosfera, Moscow (2011).

  6. M. Milosevic, Internal Reflection and ATR Spectroscopy, John Wiley & Sons, (2012), p. 244.

  7. Y. Nishi and R. Doering, Handbook of Semiconductor Manufacturing Technology, CRC Press, Воса Raton (2008).

  8. D. I. Brinkevich, S. D. Brinkevich, A. N. Petlitsky, and V. S. Prosolovich, Russ. Microelectron., 50, No. 4, 239–245 (2021).

    Article  Google Scholar 

  9. D. I. Brinkevich and V. V. Petrov, Zh. Prikl. Spektrosk., 46, No. 2, 305–307 (1987).

  10. V. P. Markevich, L. I. Murin, J. L. Lindstrom, and M. Suezawa, Fiz. Tekh. Poluprovodn., 34, No. 9, 1039–1045 (2000).

    Google Scholar 

  11. A. G. Paulish, A. K. Dmitriev, A. V. Gel′fand, and S. M. Pyrgaeva, Avtometriya, 55, No. 5, 101–106 (2019).

    Google Scholar 

  12. A. A. Namakshinas, O. D. Khorozova, and V. V. Sakharov, Usp. Khim. Khim. Tekhnol., 30, No. 7, 74–76 (2016).

    Google Scholar 

  13. D. I. Brinkevich, V. B. Odzhaev, A. N. Petliskii, and V. S. Prosolovich, Russ. Microelectron., 40, No. 4, 290–293 (2011).

    Article  Google Scholar 

  14. J. I. Pankove, Optical Processes in Semiconductors, Prentice-Hall, Englewood Cliffs, New Jersey (1971).

    Google Scholar 

  15. V. I. Bachurin, P. A. Lepshin, V. K. Smirnov, and A. B. Churilov, Pis′ma Zh. Tekh. Fiz., 24, No. 6, 18–23 (1998).

  16. B. N. Tarasevich, IR Spectra of the Main Classes of Organic Compounds. Reference Materials [in Russian], MGU, Moscow (2012).

  17. B. I. Seleznev and D. G. Fedorov, Vestn. Novgorod. Gos. Univ., No. 5 (103), 114–118 (2017).

  18. M. Tajima, T. Masui, T. Abe, and T. Nozaki, Jpn. J. Appl. Phys., 20, No. 6, L423–L425 (1981).

    Article  ADS  Google Scholar 

  19. M. W. Qi, S. S. Tan, B. Zhu, P. X. Cai, W. F. Gu, X. M. Xu, T. S. Shi, D. L. Que, and L. B. Li, J. Appl. Phys., 69, No. 6, 3775–3777 (1991).

    Article  ADS  Google Scholar 

  20. N. N. Berchenko and Yu. V. Medvedev, Usp. Khim., 63, No. 8, 655–672 (1994).

    Article  Google Scholar 

  21. V. B. Odzhaev, A. K. Panfi lenko, A. N. Petlitskii, V. S. Prosolovich, N. S. Koval′chuk, Ya. A. Solov′ev, V. A. Filipenya, and D. V. Shestovskii, Zh. Beloruss. Gos. Univ. Fiz., No. 3, 55–64 (2020).

  22. V. A. Gritsenko, Usp. Fiz. Nauk, 179, No. 9, 921–930 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Prosolovich.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 89, No. 4, pp. 498–504, July–August, 2022. https://doi.org/10.47612/0514-7506-2022-89-4-498-504.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Odzhaev, V.B., Pyatlitski, A.N., Prosolovich, V.S. et al. Attenuated Total Reflection Spectra of Nitrided SiO2/Si Structures. J Appl Spectrosc 89, 665–670 (2022). https://doi.org/10.1007/s10812-022-01408-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-022-01408-3

Keywords

Navigation