Skip to main content
Log in

Detection of β-Lactam Antibiotics Based on Conjugated Antibody with Gold Nanorods by Localized Surface Plasmon Resonance Spectrometer

  • Published:
Journal of Applied Spectroscopy Aims and scope

This study aimed to determine the β-lactam antibiotics (ampicillin, amoxicillin, penicillin G, oxacillin, and carbenicillin) using conjugated antibody along with gold nanorods (AuNRs). For this purpose, XRD, ATR-FTIR spectroscopy, transmission electron microscopy, and dynamic light scattering were utilized to detect the crystallinity, to identify functional groups involved in the synthesis of AuNRs, and to measure the size of the AuNRs, respectively. In this regard, pH of 9 and a concentration of 9.6 μg of antibody at 1 mL poly(4-styrenesulfonic acid (PSS))-modified AuNRs solution were selected as the best levels of pH and concentration of antibody for the conjugation of antibody with PSS-modified AuNRs. Thereafter, the maximum wavelength rates of the PSS-modified AuNRs, conjugation of antibody with PSS-modified AuNRs, and detection of antibiotics (from 1 nM to 1 mM) with PSS-modified AuNRs–PAb were recorded using a microvolume spectrophotometer system. The results indicate that the LSPR absorption wavelength of PSS-modified AuNRs is red-shifted by increasing the concentration of β-lactam antibiotics. By increasing the concentrations of ampicillin, penicillin G, and carbenicillin, the maximum wavelength changed, and after the saturation of the antibiotic concentration, the curve reached a plateau. Correspondingly, this indicated that the antibody had a similar behavior in the detection of these antibiotics. However, regarding amoxicillin, the saturation concentration is much higher, which indicate that the antibody is more specific for its detection. In contrast, for oxacillin, saturation occurred immediately, demonstrating that the antibody had an extremely low detection capability for this antibiotic. Finally, the findings showed that the antibody was sensitive to 1 nM of five studied β-lactam antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Tamošiūnas and A. Padarauskas, Chromatographia, 67, 783–788 (2008), https://doi.org/https://doi.org/10.1365/s10337-008-0579-5.

  2. T. Śniegocki, A. Posyniak, and J. Żmudzki, Bull. Vet. Inst. Pulawy., 51, 59–64 (2007).

    Google Scholar 

  3. W. B. Shim, J. S. Kim, M. G. Kim, and D. H. Chung, J. Food Sci., 78, 1575–1581 (2013).

    Article  Google Scholar 

  4. N. V. Gasilova and S. A. Eremin, J. Anal. Chem., 65, 255–259 (2010), https://doi.org/https://doi.org/10.1134/s1061934810030081.

  5. F. Conzuelo, M. Gamella, S. Campuzano, D. G. Pinacho, A. J. Reviejo, M. P. Marco, and J. M. Pingarrón, Biosens. Bioelectron., 36, 81–88 (2012), https://doi.org/https://doi.org/10.1016/j.bios.2012.03.044.

  6. E. Kazemi, S. Dadfarnia, A. Mohammad, H. Shabani, M. R. Fattahi, and J. Khodaveisi, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 187, 30–35 (2017), https://doi.org/https://doi.org/10.1016/j.saa.2017.06.023.

  7. N. Bi, M. Hu, H. Zhu, H. Qi, Y. Tian, and H. Zhang, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 107, 24–30 (2013), https://doi.org/https://doi.org/10.1016/j.saa.2013.01.014.

  8. M. Aghamirzaei, M. Sowti Khiabani, H. Hamishehkar, R. Rezaei Mokaram, and M. Amjadi, J. Appl. Spectrosc., 88, 174–184 (2021).

    Article  Google Scholar 

  9. P. Cyganowski, D. Jermakowicz-bartkowiak, P. Jamroz, P. Pohl, and A. Dzimitrowicz, Coll. Surfase A, 582, Article ID 123886 (2019), https://doi.org/https://doi.org/10.1016/j.colsurfa.2019.123886.

  10. K. Hamaguchi, H. Kawasaki, and R. Arakawa, Coll. Surfase A: Physicochem. Eng. Aspects, 367, 167–173 (2010), https://doi.org/https://doi.org/10.1016/j.colsurfa.2010.07.006.

  11. Y. Huang, K. Ma, K. Kang, M. Zhao, Z. Zhang, and Y. Liu, Coll. Surfaces A: Physicochem. Eng. Aspects, 421, 101–108 (2013), https://doi.org/https://doi.org/10.1016/j.colsurfa.2012.12.050.

  12. X. Li, L. Jiang, Q. Zhan, J. Qian, and S. He, Colloids Surf. A: Physicochem. Eng. Aspects, 332, 172–179 (2009), https://doi.org/https://doi.org/10.1016/j.colsurfa.2008.09.009.

  13. S. Golmohammadi and M. Etemadi, J. Appl. Spectrosc., 86, 925 (2019), https://doi.org/https://doi.org/10.1007/s10812-019-00917-y.

  14. C. Karami, A. Alizadeh, M. A. Taher, Z. Hamidi, and B. Bahrami, J. Appl. Spectrosc., 83, 687–693 (2016), https://doi.org/https://doi.org/10.1007/s10812-016-0349-3.

  15. G.P. Sahoo, H. Bar, D.K. Bhui, P. Sarkar, S. Samanta, S. Pyne, S. Ash, and A. Misra, Coll. Surfase A: Physicochem. Eng. Aspects, 375, 30–34 (2011), https://doi.org/https://doi.org/10.1016/j.colsurfa.2010.11.033.

  16. M. Singh, I. Sinha, A. K. Singh, and R. K. Mandal, Coll. Surfase A: Physicochem. Eng. Aspects, 384, 668–674 (2011), https://doi.org/https://doi.org/10.1016/j.colsurfa.2011.05.037.

  17. P. Vaccarello, L. Tran, J. Meinen, C. Kwon, Y. Abate, and Y. Shon, Coll. Surfase A: Physicochem. Eng. Aspects, 402, 146–151 (2012), https://doi.org/https://doi.org/10.1016/j.colsurfa.2012.03.041.

  18. Y. Yang, Q. Cui, Q. Cao, and L. Li, Coll. Surfase A: Physicochem. Eng. Aspects, 503, 28–33 (2016), https://doi.org/https://doi.org/10.1016/j.colsurfa.2016.05.026.

  19. J. Ye, K. Bonroy, F. Frederix, J. D. Haen, G. Maes, and G. Borghs, Coll. Surfase A: Physicochem. Eng. Aspects, 321, 313–317 (2008), https://doi.org/https://doi.org/10.1016/j.colsurfa.2008.01.028.

  20. K. S. McKeating, M. Couture, M. P. Dinel, S. Garneau-Tsodikova, and J. F. Masson, Analyst, 141, 5120–5126 (2016), https://doi.org/https://doi.org/10.1039/c6an00540c.

  21. L. Chen, Z. Wang, M. Ferreri, J. Su, and B. Han, J. Agric. Food Chem., 57, 4674–4679 (2009). https://doi.org/https://doi.org/10.1021/jf900433d.

  22. A. Singh, M. Sharma, and A. Batra, J. Optoelectron. Biomed. Mater, 5, 27–32 (2013).

    Google Scholar 

  23. C. George, I. Sergiel, A. Dzimitrowicz, P. Jamro, T. Kozlecki, and P. Pohl, Arab. J. Chem., 12, No. 8 (2016), https://doi.org/https://doi.org/10.1016/j.arabjc.2016.04.004.

  24. J. Huang, Q. Li, D. Sun, Y. Lu, Y. Su, X. Yang, H. Wang, Y. Wang, W. Shao, N. He, J. Hong, and C. Chen, Nanotechnology, 80, 285–290 (2007), https://doi.org/https://doi.org/10.1088/0957-4484/18/10/105104.

  25. J. M. B. Res, G. Oza, S. Pandey, A. Gupta, R. Kesarkar, M. Sharon, and W. Ambernath, J. Microbiol. Biotechnol., 2, 511–515 (2012).

    Google Scholar 

  26. C. Zhou, X. Zhang, X. Huang, X. Guo, Q. Cai, and S. Zhu, Sensors (Switzerland), 14, 21872–21888 (2014), https://doi.org/https://doi.org/10.3390/s141121872.

  27. A. Aljabali, Y. Akkam, M. Al Zoubi, K. Al-Batayneh, B. Al-Trad, O. Abo Alrob, A. Alkilany, M. Benamara, and D. Evans, Nanomaterials, 8, 1–15 (2018), https://doi.org/https://doi.org/10.3390/nano8030174.

  28. H. Mohammadi, M. Hafezi, S. Hesaraki, and M. M. Sepantafar, Nanomed. J., 2, 217–222 (2015), https://doi.org/https://doi.org/10.7508/nmj.

  29. N. T. Ndeh, S. Maensiri, and D. Maensiri, Adv. Nat. Sci. Nanosci. Nanotechnol., 8, aa724a (2017), https://doi.org/https://doi.org/10.1088/2043-6254/aa724a.

  30. S. Goldmeier, K. De Angelis, K. R. Casali, C. Vilodre, F. Consolim-Colombo, A. B. Klein, R. Plentz, P. Spritzer, and M. C. Irigoyen, Am. J. Transl. Res., 6, 91–101 (2014), https://doi.org/https://doi.org/10.1016/j.saa.2011.02.051.

  31. S. A. Aromal, V. K. Vidhu, and D. Philip, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 85, 99–104 (2012), https://doi.org/https://doi.org/10.1016/j.saa.2011.09.035.

  32. G. M. Corp, C. Astro, and G. M. C. Safari, Environ. Sci. Technol., 37, 3458–3466 (2003).

    Article  Google Scholar 

  33. H. Borchert, E. V. Shevchenko, A. Robert, I. Mekis, A. Kornowski, G. Grübel, and H. Weller, Langmuir, 21, 1931–1936 (2005), https://doi.org/https://doi.org/10.1021/la0477183.

  34. H. Zhang, W. Li, Z. Sheng, H. Han, and Q. He, Analyst, 135, 1680–1685 (2010). https://doi.org/https://doi.org/10.1039/c0an00025f.

  35. X. Wang, Z. Mei, Y. Wang, and L. Tang, Talanta, 136, 1–8 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Aghamirzaei.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 89, No. 2, p. 291, March–April, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghamirzaei, M., Khiabani, M.S., Hamishehkar, H. et al. Detection of β-Lactam Antibiotics Based on Conjugated Antibody with Gold Nanorods by Localized Surface Plasmon Resonance Spectrometer. J Appl Spectrosc 89, 391–399 (2022). https://doi.org/10.1007/s10812-022-01369-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-022-01369-7

Keywords

Navigation