Skip to main content
Log in

Molecular Mobility of Crude Oils Via Electron Paramagnetic Resonance of Organic Free Radicals

  • Published:
Journal of Applied Spectroscopy Aims and scope

This study aimed to investigate the molecular mobility of crude oils using the linewidth of the free radical electron paramagnetic resonance signal (EPR) as a molecular mobility probe. For this, aromatic and paraffinic crude oil samples were analyzed by X-band EPR spectroscopy, NMR experiments in time domain (TD-NMR), and rheometry. The variations on the half height linewidth with temperature presented a similar behavior for both samples, being related to different molecular mobility regimes. EPR results were compared to the variation of viscosity with temperature obtained by rheometry and TD-NMR. The results showed changes in the decrease trend of viscosity for the paraffinic sample at a temperature close to the range in which it is observed the transition from rigid to liquid regime in the EPR analysis. EPR technique showed more detailed information about the regime transition for the oil samples studied, which is in agreement with the results obtained by rheometry and TD-NMR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. F. Yen, J. G. Erdman, and A. J. Saraceno, Anal. Chem., 34, 694–700 (1962).

    Article  Google Scholar 

  2. L. Montanari, M. Clericuzio, G. Del Piero, and R. Scotti, Appl. Magn. Res., 14, 81–100 (1998).

    Article  Google Scholar 

  3. L. Artok, Y. Su, Y. Hirose, M. Hosokawa, S. Murata, and M. Nomura, Energy Fuels, 13, 287–296 (1999).

    Article  Google Scholar 

  4. J. G. Speight and B. Ozum, Petroleum Refining Processes, Marcel Dekker, New York (2002).

    Google Scholar 

  5. J. S. Buckley, Energy Fuels, 13, 328–332 (1999).

    Article  Google Scholar 

  6. I. N. Evdokimov, N. Y. Eliseev, and B. R. Akhmetov, Fuel, 82, 817–823 (2003).

    Article  Google Scholar 

  7. A. Ahmadpour, K. Sadeghy, and S. R. Maddah-Sadatieh, J. Non-Newton Fluid Mech., 205, 16–27 (2014).

    Article  Google Scholar 

  8. J. A. Carrillo and L. M. Corredor, Fuel Proc. Technol., 109, 156–162 (2013).

    Article  Google Scholar 

  9. G. T. Chala, S. A. Sulaiman, and A. Japper-Jaafar, J. Non-Newton Fluid Mech., 251, 69–87 (2018).

    Article  MathSciNet  Google Scholar 

  10. J. Uebersfeld, A. Étienne, and J. Combrisson, Nature, 174, 614 (1954).

    Article  ADS  Google Scholar 

  11. C. L. Barbosa Guedes, E. Di Mauro, V. Antunes, and A. S. Mangrich, Mar. Chem., 84, 105–112 (2003).

    Article  Google Scholar 

  12. M. T. Piccinato, C. L. B. Guedes, and E. Di Mauro, In: Analytical Characterization Methods for Crude Oiland Related Products, Ed. K. Shukla, John Wiley & Sons Ltd., ISBN 9781119286318, New Jersey (2018), pp. 77–99.

  13. N. M. Khasanova, D. T. Gabdrakhmanov, G. P. Kayukova, A. N. Mikhaylova, and V. P. Morozov, Magn. Res. Solids, 19, No. 17102, 1–11 (2017).

    Google Scholar 

  14. G. K. Wong and T. F. Yen, J. Pet. Sci. Eng., 28, 55–64 (2000).

    Article  Google Scholar 

  15. T. B. Biktagirov, M. R. Gafurov, M. A. Volodin, G. V. Mamin, A. A. Rodionov, V. V. Izotov, A. V. Vakhin, D. R. Isakov, and S. B. Orlinskii, Energy Fuels, 28, 6683–6687 (2014).

    Article  Google Scholar 

  16. M. S. Hernández, D. S. Coll, and P. J. Silva, Energy Fuels, 33, 990–997 (2019).

    Article  Google Scholar 

  17. M. R. Gafurov, M. A. Volodin, A. A. Rodionov, A. T. Sorokina, M. Y. Dolomatov, A. V. Petrov, A. V. Vakhin, G. V. Mamin, and S. B. Orlinskii, J. Pet. Sci. Eng., 166, 363–369 (2018).

    Article  Google Scholar 

  18. I. Ahmad, S. M. Sohail, H. Khan, W. Ahmad, K. Gul, R. Khan, and A. Yasin, Energy Fuels, 32, 181–190 (2018).

    Article  Google Scholar 

  19. H. Y. Carr and E. M. Purcell, Phys. Rev., 94, 630–638 (1954).

    Article  ADS  Google Scholar 

  20. S. Meiboom and D. Gill, Rev. Sci. Instrum., 29, 688–691 (1958).

    Article  ADS  Google Scholar 

  21. Z. Yang, Z. Ma, Y. Luo, Y. Zhang, H. Guo, and W. Lin, Geofluids, Article ID 9542152 (2018).

  22. M. Ikeya, New Applications of Electron Spin Resonance: Dating, Dosimetry and Microscopy, WSPC, ISBN 978-981-02-1200-1, Osaka University, Japan (1993).

  23. E. Di Mauro, C. L. B. Guedes, and O. R. Nascimento, Appl. Magn. Res., 29, 569–575 (2005).

    Article  Google Scholar 

  24. M. Turini, C. L. Barbosa Guedes, and E. Di Mauro, in: Crude Oil Emulsions – Composition, Stability, Characterization, Ed. M. El-Sayed Abdel Raouf, 147–168, InTech, ISBN 978-953-51-0220-5, Rijeka, Croatia (2012).

  25. D. E. O'Reilly, J. Chem. Phys., 29, 1188–1189 (1958).

    Article  ADS  Google Scholar 

  26. F. Gerson and W. Huber, Electron Spin Resonance Spectroscopy of Organic Radicals, Wiley-VCH, ISBN 978-3-527-30275-8, Weinheim, Germany (2003).

  27. J. R. Fanchi and R. L. Christiansen, Introduction to Petroleum Engineering, Wiley, New Jersey (2017).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. L. S. Vicentin.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 89, No. 1, p. 138, January–February, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Valezi, D.F., Picinato, M.T. et al. Molecular Mobility of Crude Oils Via Electron Paramagnetic Resonance of Organic Free Radicals. J Appl Spectrosc 89, 186–190 (2022). https://doi.org/10.1007/s10812-022-01342-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-022-01342-4

Keywords

Navigation