Skip to main content
Log in

Patterns in Formation of the Visibility Zone of Active-Pulse Vision Systems at a Fixed Delay Distance Taking Into Account the Shape of the Illumination Pulse

  • Published:
Journal of Applied Spectroscopy Aims and scope

Herein, the spatial-energy profiles (SEPs) of the recorded signal were numerically studied at different shapes of the illumination pulse and ratios between the durations of illumination τp and registration τg pulses at a fixed delay distance. It was established that at τp < τg and τp = τg the characteristic visibility distance ranges do not depend on the shape of the illumination pulse. For their determination it is possible to use the previously obtained expressions for square wave illumination pulses. As a rule, for the cases considered at τp > τg SEP is a convex asymmetric curve with one maximum in a point Smax. For the simplest forms of illumination pulses designed by triangles or trapezoids the analytical expressions were obtained, allowing calculation of the value Smax from the known delay distance and illumination pulse duration. For the correlation τp > τg, the method of the calibration constant was also proposed to determine the distance Smax in the case of a real illumination pulse shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. L. Geikhman and V. G. Volkov, Fundamentals of Improving Visibility in Difficult Conditions [in Russian], LLC "Nedra–Business Center," Moscow (1999).

  2. V. G. Volkov and B. A. Sluchak, Kontent, 15, No. 3, 62–70 (2016).

    Google Scholar 

  3. V. G. Volkov, Photonics, No. 4, 24–28 (2007).

    Google Scholar 

  4. V. G. Volkov, Control, Communication and Security Systems [in Russian], No. 2, 142–180 (2016).

  5. Seung-Kyu Park, In-Young Choi, Sung-Hoon Baik, and Kyung-Min Jeong, Opt. Appl., 47, No. 4, 533–543 (2017).

    Google Scholar 

  6. X. Wang, Y. Li, and Y. Zhou, Opt. Express, 23, 7820–7831 (2015).

    Article  Google Scholar 

  7. M. Laurenzis and F. Christnacher, Adv. Opt. Technol., 2, Nos. 5–6, 397–405 (2013).

    ADS  Google Scholar 

  8. S. Y. Chua, X. Wang, N. Guo, C. S. Tan, T. Y. Chai, and G. L. Seet, J. Eur. Opt. Soc. Rapid, 11, 16015 (2016).

    Article  Google Scholar 

  9. B. Goehler and P. Lutzmann, Opt. Eng., 56, No. 3, 031203 (2017).

    Article  ADS  Google Scholar 

  10. D. V. Alant'ev, A. A. Golitsyn, A. V. Golitsyn, and N. A. Seĭfi , J. Opt. Technol., 85, No. 6, 355–358 (2018).

    Article  Google Scholar 

  11. А. А. Golitsyn and N. A. Seyfi , Appl. Phys., No. 1, 78–83 (2018).

  12. X. Wang, Y. Li, and J. Zhou, Appl. Opt., 52, No. 30, 7399–7406 (2013).

    Article  Google Scholar 

  13. M. Laurenzis, F. Christnacher, and D. Monnin, Opt. Lett., 32, No. 21, 3146–3148 (2007).

    Article  ADS  Google Scholar 

  14. B. F. Kuntsevich and D. V. Shabrov, Proc. SPIE, 11159, 1115910 (2019).

    Google Scholar 

  15. M. Laurenzis and E. Bacher, Appl. Opt., 50, 3824—3828 (2011).

    Article  ADS  Google Scholar 

  16. X. Wang, Y. Cao, W. Cui, X. Liu, S. Fan, Y. Zhao, and Y. Li, Proc. SPIE, 9260, 92604L (2014).

    Article  ADS  Google Scholar 

  17. X. Zhang, H. Yan, and Y. Jiang, Opt. Lett., 33, No. 11, 1219–1221 (2008).

    Article  ADS  Google Scholar 

  18. C Jin, X. Sun, Y. Zhao, Y. Zhang, and L. Liu, Opt. Lett., 34, No. 22, 3550–3552 (2009).

    Article  ADS  Google Scholar 

  19. V. A. Gorobets, B. F. Kuntsevich, and D. V. Shabrov, J. Appl. Spectrosc., 84, 850–858 (2017).

    Google Scholar 

  20. V. A. Gorobets, V. V. Kabanov, V. P. Kabashnikov, B. F. Kuntsevich, N. S. Metelskaya, and D. V. Shabrov, J. Appl. Spectrosc., 82, 63–71 (2015).

    Google Scholar 

  21. V. Kabashnikov and B. Kuntsevich, Appl. Opt., 56, No. 33, 8378–8384 (2017).

    Article  ADS  Google Scholar 

  22. Wang Xinwei, Zhou Yan, and Liu Yuliang, Chin. Opt. Lett., 10, 101101 (2012).

    Article  ADS  Google Scholar 

  23. B. F. Kuntsevich and V. P. Kabashnikov, J. Appl. Spectrosc., 88, 1112–1116 (2021).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. F. Kuntsevich.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 88, No. 3, pp. 478–484, May–June, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuntsevich, B.F., Shabrov, D.V. Patterns in Formation of the Visibility Zone of Active-Pulse Vision Systems at a Fixed Delay Distance Taking Into Account the Shape of the Illumination Pulse. J Appl Spectrosc 88, 596–602 (2021). https://doi.org/10.1007/s10812-021-01214-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-021-01214-3

Keywords

Navigation