Skip to main content
Log in

Parameters of Fundamental Optical Functions and Elementary Transition Bands for Mg2X Compounds (X = Si, Ge, Sn)

  • Published:
Journal of Applied Spectroscopy Aims and scope

The spectra of 16 optical functions of the group of compounds Mg2X (X=Si, Ge, Sn) in the range of 1–11 eV at 77 K were determined and compared. Their main features and general relationships were established. Calculations were performed on the basis of the experimental reflectance spectra R(E) using the Kramers–Kronig relations and analytical formulas connecting the optical functions. The integral spectra of the imaginary part of the dielectric function ε2(E) were broken down into elementary transition bands in the region of 1.5–6.0 eV using the improved nonparametric method of combined Argand diagrams with allowance for the effective number of valence electrons forming the individual elementary bands. For Mg2X compounds (X = Si, Ge, Sn), instead of 5–6 maxima and steps, an average of six times more elementary components of transitions caused by exciton and interband transitions were found in the integral spectra. The energies of the maxima and the areas of the selected elementary components of the transition bands of the three compounds were determined and compared. The supposed nature and localization of the identified elementary components of the transitions are proposed on the basis of known theoretical calculations. The dependence of the energies of the maxima of the selected transition bands on the lattice parameters of the three compounds is plotted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qian Chen, Kan Chen, Qing Chen, Qing-quan Xiao, and Quan Xie, Key Eng. Mater., 727, 581–587 (2017).

  2. B. Ryu, S. Park, Eun-Ae Choi, J. de Boor, P. Ziolkowski, J. Chung, and Su Dong Park, J. Appl. Phys., 1–23 (2019).

  3. G. Shi and E. Kioupakis, J. Appl. Phys., 123, 085114 (2018).

    Article  ADS  Google Scholar 

  4. J. J. Pulikkotil, D. J. Singh, S. Auluck, M. Saravanan, D. K. Misra, A. Dhar, and R. C. Budhani, Phys. Rev. B, 86, No. 15, 1555204(1–8) (2012).

  5. K. Kaur, S. Dhiman, and R. Kumar, Mater. Res. Express, 4, 075509 (2017).

    Article  ADS  Google Scholar 

  6. V. K. Zaitsev, M. I. Fedorov, E. A. Gurieva, I. S. Eremin, P. P. Konstantinov, A. Yu. Samunin, and M. V. Vedernikov, Phys. Rev. B, 86, No. 74, 045207 (1–5) (2006).

  7. M. Y. Au-Yang and Marvin L. Cohen, Phys. Rev., 178, No. 3, 1358 (1969).

  8. В. M. Rowe, Thermoelectrics Handbook, CRC Press, Boca Raton (2006).

    Google Scholar 

  9. N. Savvides and H. Y. Chem, J. Electron. Mater., 39, 2136 (2010).

    Article  ADS  Google Scholar 

  10. L. A. Lott and D. W. Lynch, Phys. Rev., 141, No. 2, 681–687 (1966).

    Article  ADS  Google Scholar 

  11. S. G. Kroitoru and V. V. Sobolev, Neorg. Mater., 2, No. 3, 50–54 (1966).

    Google Scholar 

  12. D. McWilliams and D. W. Lynch, J. Opt. Soc. Am., 53, No. 2, 298–299 (1963).

    Article  Google Scholar 

  13. V. V. Sobolev, V. I. Donetskikh, E. B. Sokolov, and L. A. Roiter, FTT, 12, No. 10, 2687–2691 (1970).

    Google Scholar 

  14. W. J. Scouler, Phys. Rev., 178, No. 3, 1353–1357 (1969).

    Article  ADS  Google Scholar 

  15. V. V. Sobolev, Phys. Status Solidi (b), 49, 209–214 (1972).

  16. W. Lui, X. Tan, K. Yin, H. Lui, X. Tang, J. Shi, Q. Zhang, and C. Uher, Phys. Rev. Lett., 108, No. 16, 166601(1–5) (2012).

  17. X. J. Tan, W. Lui, H. J. Lui, J. Shi, X. F. Tang, and C. Uher, Phys. Rev. B, 85, No. 20, 2051212(1–10) (2012).

  18. K. Kutorasinski, B. Wiendlocha, J. Tobola, and S. Kaprzyk, Phys. Rev. B, 89, 115205 (2014).

    Article  ADS  Google Scholar 

  19. J. Bourgeois, J. Tobola, B. Wiendlocha, L. Chaput, P. Zwolenski, D. Berthebaud, F. Gascoin, Q. Recour, and H. Scherrer, Func. Mater. Lett., 6, No. 5, 1340005(1–14) (2013).

  20. N. O. Folland, Phys. Rev., 158, 764–775 (1967).

    Article  ADS  Google Scholar 

  21. Peter M. Lee, Phys. Rev., 135, No. 4A, 1110–1114 (1964).

    Article  ADS  Google Scholar 

  22. F. Aymerich and G. Mula, Phys. Status Solidi, 42, 697–704 (1970).

    Article  Google Scholar 

  23. O. Benhalal, A. Chahed, S. Kaksari, B. Abbar, B. Bouhafs, and H. Aourag, Phys. Status Solidi (b), 242, No. 10, 2022–2032 (2005).

  24. B. Arnaud and M. Alouani, Phys. Rev. B, 64, No. 3, 033202(1–4) (2001)

  25. X. Tan, Y. Yin, H. Hu, Y. Xiao, Z. Guo, Q. Zhang, H. Wang, Guo-Qiang Liu, and J. Jiang, Ann. Phys., Berlin, 1900543 (2020).

  26. Chen Qian, Xie Quan, Zhao Feng Juan, Cui Dong Meng, Li Xu Zhen, В. Arnaud, and M. Alouani, Chin. Sci. Bull., 55, No. 21, 2236–2242 (2010).

    Article  Google Scholar 

  27. J. de Boor, A. Berche, and P. Jund, J. Phys. Chem. C, 1–26 (2020).

  28. A. Reifer, F. Fuchs, C. Rodl, A. Schleife, F. Bechstead, and R. Goldhahn, Phys. Rev. B, 84, No. 7, 075218(1–13) (2011).

  29. V. V. Sobolev, Optical Characteristics and Electronic Structure of Nonmetals. I. Introduction to Theory [in Russian], Institute of Computer Science, Moscow–Izhevsk (2012).

  30. A. I. Kalugin, E. A. Antonov, D. A. Perevoshchikov, and V. Val. Sobolev, 21, No. 4, 604–610 (2019).

  31. V. V. Sobolev, Optical Characteristics and Electronic Structure of Nonmetals. II, Modeling of Integral Spectra by Elementary Bands [in Russian], Institute of Computer Science, Moscow–Izhevsk (2012).

  32. V. Val. Sobolev and V. V. Sobolev, J. Appl. Spectrosc., 85 630–637 (2018).

  33. V. Val. Sobolev and V. V. Sobolev, Izv. Vuzov. Fizika, 61, No. 7, 27–34 (2018).

  34. V. Val. Sobolev and V. V. Sobolev, Izv. Vuzov. Fizika, 62, No. 5, 69–76 (2019).

  35. Y. Li, T. Ma, Y. Ren, T. Liu, and X. Zou, Mater. Res. Express, 7, 036533(1–15) (2020).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Val. Sobolev.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 88, No. 1, pp. 150–158, January–February, 2012.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobolev, V.V., Kalugin, A.I. & Antonov, E.A. Parameters of Fundamental Optical Functions and Elementary Transition Bands for Mg2X Compounds (X = Si, Ge, Sn). J Appl Spectrosc 88, 137–145 (2021). https://doi.org/10.1007/s10812-021-01152-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-021-01152-0

Keywords

Navigation