Skip to main content
Log in

Determining the Frequency of a Purely Electronic Transition from Optical Activity Spectra

  • Published:
Journal of Applied Spectroscopy Aims and scope

The possibility of determining the frequency of a purely electronic transition from circular dichroism, circularly polarized luminescence, and magnetically induced optical activity spectra and the spectral dependence of the coefficients of circular dichroism dissymmetry is demonstrated. Examples of such determination from experimentally measured molecular optical rotation spectra in absorption and emission are presented. It was shown that the frequency of a purely electronic transition in the spectral dependences of the dissymmetry coefficients can be indicated by an extremum. As in diffuse linear vibrionic spectra, the frequencies of the purely electronic spectra do not correspond to maxima in the spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Tolkachev, Zh. Prikl. Spektrosk., 84, No. 4, 648–654 (2017) [V. A. Tolkachev. J. Appl. Spectrosc., 84, 668–673 (2017)].

  2. V. A. Tolkachev, Dokl. NAN Belarusi, 61, No. 50, 50–55 (2017).

    Google Scholar 

  3. V. A. Tolkachev, Zh. Prikl. Spektrosk., 85, No. 5, 740–744 (2018) [V. A. Tolkachev, J. Appl. Spectrosc., 85, 845–849 (2018)].

  4. V. A. Tolkachev, Zh. Prikl. Spektrosk., 85, No. 2, 199–204 (2018) [V. A. Tolkachev, J. Appl. Spectrosc., 85, 220–224 (2018)].

  5. V. A. Tolkachev, Zh. Prikl. Spektrosk., 86, No. 3, 464–467 (2019) [V. A. Tolkachev. J. Appl. Spectrosc., 86, 504–507 (2019)].

  6. V. A. Tolkachev and A. P. Blokhin, Sci. J. Anal. Chem., 7, 76–82 (2019).

    Article  Google Scholar 

  7. V. A. Tolkachev, Combining States Gap from Optical Dichroism of Diffuse Vibronic Spectra. Chirality (in print).

  8. H. Longhals, A. Hafer, S. Bernhard, J. S. Siegel, and P. Mayer, J. Org. Chem., 76, 990–923 (2011).

    Google Scholar 

  9. Y. Morisaki, M. Gon, T. Sasamori, N. Tokitoh, and Y. Chujo, J. Am. Chem. Soc., 136, No. 9, 3350–3353 (2014).

    Article  Google Scholar 

  10. S. Sato, A. Yoshii, S. Takahashi, S. Furumi, M. Takeuchi, and H. Isobe, Proc. Nat. Acad. Sci., 114, No. 50, 13097–13101 (2017); https://doi.org/10.1073/pnas.1717524114.

    Article  Google Scholar 

  11. W. Voelter, R. Records, E. Bunnenberg, and C. Gjerassi, J. Am. Chem. Soc., 90, No. 22, 6163–6170 (1968).

    Article  Google Scholar 

  12. G. Barth, W. Voelter, E. Bunnenberg, and C. Djerassi, J. Am. Chem. Soc., 94, No. 4, 1293–1297 (1972).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Tolkachev.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 87, No. 3, pp. 499–504, May–June, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tolkachev, V.A. Determining the Frequency of a Purely Electronic Transition from Optical Activity Spectra. J Appl Spectrosc 87, 525–530 (2020). https://doi.org/10.1007/s10812-020-01034-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-020-01034-x

Keywords

Navigation