Skip to main content
Log in

Molecular Modeling, Dimer Calculations, Vibrational Spectra, and Molecular Docking Studies of 5-Chlorouracil

  • Published:
Journal of Applied Spectroscopy Aims and scope

The structure and vibrational calculations of 5-chlorouracil (5-ClU) and its most stable dimer have been analyzed using the DFT method with B3LYP/6-31++G(d,p) and wb97xd/6-31++G(d,p), respectively. Vibrational calculations of the monomeric and dimeric forms were performed using both harmonic and anharmonic oscillator approximations with the same basis sets. A complete vibrational analysis of the molecule has been performed by combining experimental Raman, FT-IR spectral data and quantum chemical calculations. In addition, the DNA docking analysis of 5-ClU molecule was performed. A 5-ClU molecule binds to the active site of DNA by hydrogen bonding interactions. The results show that the docked ligand formed a stable complex with DNA with binding affi nity of –5.3 kcal/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ortiz, M. C. Alvarez-Ros, M. A. Palafox, V. K. Rastogi, V. Balachandran, and S. K. Rathor, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 130, 653–668 (2014).

    Article  ADS  Google Scholar 

  2. K. Dobrosz-Teperek, Z. Zwierzchowska, W. Lewandowski, K. Bajdor, J. C. Dobrowolski, and A. P. Mazurek, J. Mol. Struct.,471, Nos. 1–3, 115–125 (1998).

    Article  ADS  Google Scholar 

  3. J. P. Henderson, J. Byun, J. Takeshita, and J. W. Heinecke, J. Biol. Chem., 278, No. 26, 23522–23528 (2003).

    Article  Google Scholar 

  4. S. Ortiz, M. A. Palafox, V. K. Rastogi, T. Akitsu, I. H. Joe, and S. Kumar, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 110, 404–418 (2013).

    Article  ADS  Google Scholar 

  5. J. C. Dobrowolski, J. E. Rode, R. Kołos, M. H. Jamroz, K. Bajdor, and A. P. Mazurek, J. Phys. Chem. A, 109, No. 10, 2167–2182 (2005).

    Article  Google Scholar 

  6. S. Sun and B. Alex, J. Phys. Chem. A, 119, No. 17, 3961–3971 (2015).

    Article  Google Scholar 

  7. G. N. Ten, T. G. Burova, and V. I. Baranov, J. Appl. Spectrosc., 73, No. 4, 492–498 (2006).

    Article  ADS  Google Scholar 

  8. J. S. Singh, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 87, 106–111 (2012).

    Article  ADS  Google Scholar 

  9. P. M. Elkin, V. F. Pulin, and V. I. Berezin, Izv. Saratov. Univ., Fizika, 13, No. 2, 39–45 (2013) (in Russian).

  10. S. M. Morris, Mutat. Res./Rev. Genet. Toxicol., 297, No. 1, 39–51 (1993).

  11. Q. Jiang, B. C. Blount, and B. N. Ames, J. Biol. Chem., 278, No. 35, 32834–32840 (2003).

    Article  Google Scholar 

  12. V. K. Rastrogi, H. P. Mital, C. B. Arora, and U. Awasthi, in: Spectroscopy of Biological Molecules, Springer, Dordrecht, 349–350 (1995).

    Chapter  Google Scholar 

  13. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zak rzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Ku din, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashen ko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Na nayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian 03, Revision B.1; Gaussian, Inc.: Pittsburgh, PA (2003).

  14. A. D. Becke, J. Chem. Phys.,98, No. 7, 5648–5652 (1993).

    Article  ADS  Google Scholar 

  15. M. H. Jamroz, Vibrational Energy Distribution Analysis VEDA 4.0, Drug Institute, Warsaw, Poland (2004).

  16. O. Trott and J. O. Arthur, J. Comput. Chem.,31, No. 2, 455–461 (2010).

    Google Scholar 

  17. J. D. Chai and H. G. Martin, Phys. Chem. Chem. Phys., 10, No. 44, 6615–6620 (2008).

    Article  Google Scholar 

  18. J. D. Chai and H. G. Martin, J. Chem. Phys.,128, No. 8, 084106 (2008).

    Article  ADS  Google Scholar 

  19. H. Sternglanz and E. B. Charles, Biochim. Biophys. Acta (BBA)–Nucleic Acids and Protein Synth., 378, No. 1, 1–11 (1975).

    Article  Google Scholar 

  20. E. I. Izgorodina, L. B. Uditha, and R. M. Douglas, J. Phys. Chem. A, 113, No. 25, 7064–7072 (2009).

    Article  Google Scholar 

  21. J. Mohan, Organic Spectroscopy: Principles and Applications, CRC Press (2004).

  22. G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts, John Wiley & Sons (2004).

  23. H. R. Drew, R. M. Wing, T. Takano, C. Broka, S. Tanaka, K. Itakura, and R. E. Dickerson, Proc. Natl. Acad. Sci., 78, No. 4, 2179–2183 (1981).

    Article  ADS  Google Scholar 

  24. N. Shahabadi and B. Somayeh, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 136, 1454–1459 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Akalin.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 86, No. 6, pp. 858–867, November–December, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akalin, E., Celik, S. & Akyuz, S. Molecular Modeling, Dimer Calculations, Vibrational Spectra, and Molecular Docking Studies of 5-Chlorouracil. J Appl Spectrosc 86, 975–985 (2020). https://doi.org/10.1007/s10812-020-00926-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-020-00926-2

Keywords

Navigation