Skip to main content
Log in

Forensic Examination of Textile Fibers Using UV-Vis Spectroscopy Combined with Multivariate Analysis

  • Published:
Journal of Applied Spectroscopy Aims and scope

The current study aims at discriminating cotton and woolen textile fibers from dye using UV-Vis spectroscopy and chemometrics methods. For extraction of the dye from fibers, seven solvent systems have been used, and different extraction conditions have also been tested. Two different approaches, i.e., a visual comparison of peaks and chemometric analysis, have been proposed to differentiate between the textile fibers. The comparison of peaks obtained through UV-Vis spectra provides the discrimination power of 83.6% for cotton fibers and 94.3% for the woolen fibers. However, the incorporation of chemometrics has further improved the discrimination power to 100% for cotton and 98.1% for woolen fibers. The discrimination of 100% is achieved with nonsignificant values of the Welch's t-test, which illustrates that all samples are discriminated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. M. Houck, Mute Witnesses, San Diego, CA, Elsevier, Academic Press (2001).

    Google Scholar 

  2. S. Palenik, Microscopical Examination of Fibres. In: Forensic Examination of Fibres, Ed. J. Robertson, M. Grieve, 2nd ed., New York, CRC (1999).

    Google Scholar 

  3. K. Kirkbride and M. Tungol, Infrared Microspectroscopy of Fibres. In: Forensic Examination of Fibres, Ed. J. Robertson, M. Grieve, 2nd ed., New York, CRC (1999).

    Google Scholar 

  4. K. G. Wiggins, S. R. Crabtree, and B. M. March, J. Forens. Sci., 41, 1042–1045 (1996).

    Article  Google Scholar 

  5. G. M. Golding and S. Kokot, J. Forens. Sci., 34, 1156–1165 (1989).

    Article  Google Scholar 

  6. R. Griffin and J. Speers, Other Methods of Colour Analysis: High Performance Liquid Chromatography. In: Forensic Examination of Fibres, Ed. J. Robertson, M. Grieve, 2nd ed., Boca Raton, FL, CRC (1999).

    Google Scholar 

  7. A. A. Tuinman, L. A. Lewis, and S. A. Lewis, Anal. Chem., 75, 2753–2760 (2003).

    Article  Google Scholar 

  8. L. J. Soltzberg, A. Hagar, S. Kridaratikorn, A. Mattson, and R. Newman, J. Am. Soc. Mass Spectrom., 18, 2001–2006 (2007).

    Article  Google Scholar 

  9. A. R. Fakhari, M. C. Breadmore, M. Macka, and P. R. Haddad, Anal. Chim. Acta, 580, 188–193 (2006).

    Article  Google Scholar 

  10. M. C. Grieve, T. W. Biermann, and M. Davingnon, Sci. Justice, 43, 5–22 (2003).

    Article  Google Scholar 

  11. K. G. Wiggins, J. A. Holness, and B. M. March, J. Forens. Sci., 50, 364–368 (2005).

    Article  Google Scholar 

  12. K. G. Wiggins, R. Palmer, W. Hutchinson, and P. Drummond, Sci. Justice, 47, 9–18 (2007).

    Article  Google Scholar 

  13. S. Kokot, K. Crawford, L. Rintoul, and U. Meyer, Vibr. Spectrosc., 15, 103–111 (1997).

    Article  Google Scholar 

  14. J. Thomas, P. Buzzini, G. Massonnet, B. Reedy, and C. Roux, J. Forens. Sci. Int., 152, 189–197 (2005).

    Article  Google Scholar 

  15. G. Massonnet, P. Buzzini, F. Monard, G. Jochem, L. Fido, S. Bell, M. Stauber, T. Coyle, C. Roux, J. Hemmings, H. Leijenhorst, Z. Van Zanten, K. Wiggins, C. Smith, S. Chabli, T. Sauneuf, A. Rosengarten, C. Meile, S. Ketterer, and A. Blumer. J. Forens. Sci. Int., 222, 200–207 (2012).

    Article  Google Scholar 

  16. R. Kumar, V. Sharma, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 175, 67–75 (2017).

    Article  ADS  Google Scholar 

  17. M. J. C. Pontes. Anal. Chim. Acta, 642, 12–18 (2009).

    Article  Google Scholar 

  18. R. Kumar, V. Kumar, and V. Sharma, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 170, 19–28 (2017).

    Article  ADS  Google Scholar 

  19. R. G. Brereton, Chemometrics: Data Analysis for the Laboratory and Chemical Plant, Chichester, John Wiley & Sons Ltd. (2003).

    Book  Google Scholar 

  20. D. L. Massart, B. G. M. Vandeginste, and S. N. Deming, Chemometrics: A Textbook (Data Handling in Science and Technology), Vol. 2, Amsterdam, Elsevier (1988).

    MATH  Google Scholar 

  21. A. V. Alekseyenko, Bioinformatics, 32, 3552–3558 (2016).

    Google Scholar 

  22. K. Smalldon, A. Moffat, and S. L. Morgan, J. Forens. Sci. Soc., 13, 291–295 (1973).

    Article  Google Scholar 

  23. H. F. Kaiser, Educ. Psychol. Measur., 20, 141–151 (1960).

    Article  Google Scholar 

  24. R. Kumar and V. Sharma, TrAC, Trends Anal. Chem., 105, 191–201 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishal Sharma.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 86, No. 1, pp. 110–115, January–February, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, V., Kumar, R. & Kaur, P. Forensic Examination of Textile Fibers Using UV-Vis Spectroscopy Combined with Multivariate Analysis. J Appl Spectrosc 86, 96–100 (2019). https://doi.org/10.1007/s10812-019-00787-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-019-00787-4

Keywords

Navigation