Skip to main content
Log in

Raman, Infrared, and Chemical Characterization of Fly Ash-Generated Spherules

  • Published:
Journal of Applied Spectroscopy Aims and scope

The majority of studies on silicate glass spherules containing fly ash deal only with the determination of their chemical composition. Nearly 70 vol.% of fly ash is comprised of silicate glass spherules. Here, we report spectroscopic properties of silicate glass spherules using the laser micro-Raman and Fourier transform infrared techniques coupled with refractive index measurements, X-ray diffraction, and electron probe micro-analysis to better ascertain their physical and chemical properties. Glass spherules show similar refractive indices (1.499–1.510) and a bell-shaped diffraction pattern with 5–10 vol.% of crystallites observed on microscopic and submicroscopic scales. The bulk chemical composition of fly ash spherules is predominantly silica-rich (SiO2: 70.96–74.13 wt.%) with a subordinate amount of Al2O3 (0.11–0.69 wt.%), FeO(Total) + MgO (3.6–4.94 wt.%), and CaO + Na2O + K2O (20.83–22.62 wt.%). The infrared spectra suggest the presence of a dissolved –OH– bearing fluid phase in the studied fly ash spherules. The spectra also show symmetric stretching peaks of C–O–C due to the atmospheric CO2 adsorption at 2350 cm–1. The Raman spectra show broad amorphous and/or short-ordered phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Ribeiro, B. Valentim, C. Ward, and D. Flores, Int. J. Coal Geol., 86, 204–212 (2011).

    Article  Google Scholar 

  2. B. Valentim, A. Guedes, D. Flores, C. R. Ward, and J. C. Hower, Coal Comb. Gasif. Prod., 1, 14–24 (2009).

    Google Scholar 

  3. F. Goodarzi, Fuel, 85, 1418–1427 (2006).

    Article  Google Scholar 

  4. A. Niyogi, J. K. Pati, S. C. Patel, D. Panda, and S. K. Patil, J. Earth Sys. Sci., 120, 1043–1054 (2011).

    Article  ADS  Google Scholar 

  5. J. C. Swanepoel and C. A. Strydom, Appl. Geochem., 17, 1143–1148 (2002).

    Article  Google Scholar 

  6. F. Škvára, T. Jílek, and L. Kopecký, Ceramics–Silikáty, 49, 195–204 (2005).

    Google Scholar 

  7. G. S. Ryu, Y. B. Lee, K. T. Koh, and Y. S. Chung, Construct. Build. Mater., 47, 409–418 (2013).

    Article  Google Scholar 

  8. K. Ojha, N. C. Pradhan, and A. N. Samanta, Bull. Mater. Sci., 27, No. 6, 555–564 (2004).

    Article  Google Scholar 

  9. A. Derkowski, W. Franus, E. Beran, and A. Czímerová, Powder Technol., 166, 47–54 (2006).

    Article  Google Scholar 

  10. C. Wang, J. Li, X. Sun, L. Wang, and X. Sun, J. Environ. Sci., 21, 127–136 (2009).

    Article  Google Scholar 

  11. J. Xie, Z. Wang, D. Wu, and H. Kong, Fuel, 116, 71–76 (2014).

    Article  Google Scholar 

  12. T. Yao, X. S. Ji, P. K. Sarker, J. H. Tang, L. Q. Ge, M. S. Xia, Y. and Q. Xi, Earth-Sci. Rev., 141, 105–121 (2015).

  13. S. Yürüyen and H. Ö. Toplan, Ceram. Inter., 35, 2427–2433 (2009).

    Article  Google Scholar 

  14. T. K. Mukhopadhyay, S. Ghosh, J. Ghosh, S. Ghatak, and H. S. Maiti, Ceram. Inter., 36, 1055–1062 (2010).

    Article  Google Scholar 

  15. J. Ayala, F. Blanco, P. Garcia, P. Rodriguez, and J. Sancho, Fuel, 77, 1147–1154 (1998).

    Article  Google Scholar 

  16. J. Shakhapure, H. Vijayanand, S. Basavaraja, V. Hiremath, and A. Venkataraman, Bull. Mater. Sci., 28, 713–718 (2005).

    Article  Google Scholar 

  17. M. Visa, L. Isac, and A. Duta, Appl. Surf. Sci., 258, 6345–6352 (2012).

    Article  ADS  Google Scholar 

  18. S. S. Potgieter-Vermaaka, J. H. Potgieter, R. A. Krugerc, Z. Spolnika, and R. Van Grieken, Fuel, 84, 2295–2300 (2005).

    Article  Google Scholar 

  19. M. Yuan, J. Lu, and G. Kong, Surf. Coat. Technol., 204, 1229–1235 (2010).

    Article  Google Scholar 

  20. S. S. Potgieter-Vermaak, J. H. Potgieter, M. Belleil, F. DeWeerdt, and R. Van Grieken, Cem. Concr. Res., 36, 663–670 (2006).

    Article  Google Scholar 

  21. Y. Yao and H. Sun, J. Haz. Mat., 213–214, 71–82 (2012).

    Article  Google Scholar 

  22. S. Katara, S. Kabra, A. Sharma, R. Hada, and A. Rani, Int. Res. J. Pure Appl. Chem., 3, 299–307 (2013).

    Article  Google Scholar 

  23. J. H. Choi, C. Eichele, Y. C. Lin, F. G. Shi, B. Carlsonb, and S. Sciamanna, Scr. Mater., 58, 413–416 (2008).

    Article  Google Scholar 

  24. W. Cross, J. P. Iddings, L. V. Pirsson, and H. S. Washington, J. Geol., 10, 555–690 (1902).

    Article  ADS  Google Scholar 

  25. F. R. Boyd and J. L. England, J. Geophy. Res., 68, 311–323 (1963).

    Article  ADS  Google Scholar 

  26. W. L. Huang and P. J. Wyllie, Am. Miner., 60, 213–217 (1975).

    Google Scholar 

  27. R. V. Patel and S. Manocha, J. Composites, 1–6 (2013); https://doi.org/10.1155/2013/674073.

    Article  Google Scholar 

  28. S. R. Taylor and S. M. McLennan, Philos. Trans. R. Soc. London, A301, 381–399 (1981).

    Article  ADS  Google Scholar 

  29. F. Goodarzi and H. Sanei, Fuel, 88, 382–386 (2009).

    Article  Google Scholar 

  30. E. M. Levin, C. R. Robbins, and H. F. McMurdie, Am. Ceram. Soc., ISBN 0-916094-05-7, 2435 (1969).

  31. E. C. Ziemath, Quim. Nova, 21, 356–360 (1998).

    Article  Google Scholar 

  32. P. McMillan, Am. Miner., 69, 622–644 (1984).

    ADS  Google Scholar 

  33. S. Mohan and R. Gandhimathi, J. Haz. Mater., 169, 351–359 (2009).

    Article  Google Scholar 

  34. G. Parthasarathy, A. C. Kunwar, and R. Srinivasan, Eur. J. Miner., 13, 127–134 (2001).

    Article  Google Scholar 

  35. P. Colomban, M. P. Etcheverry, and M. Asquier, J. Raman Spectrosc., 37, 614–626 (2006).

    Article  ADS  Google Scholar 

  36. N. Zotov, M. Marinov, and L. Konstantinov, J. Non-Cryst. Solid, 197, 179–191 (1996).

    Article  ADS  Google Scholar 

  37. Database of Raman spectroscopy, Rruff.info: http://rruff.info (Accessed on July, 2014).

  38. G. Spiekermann, M. Steele-MacInnis, C. Schmidt, and S. J. Jahn, Chem. Phys., 136, 1–14 (2012).

    Google Scholar 

  39. F. Holtz, J. M. Beny, B. O. Mysen, and M. Pichavant, Chem. Geol., 128, 25–39 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Niyogi.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 85, No. 5, pp. 752–759, September–October, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niyogi, A., Pati, J.K., Panigrahi, M.K. et al. Raman, Infrared, and Chemical Characterization of Fly Ash-Generated Spherules. J Appl Spectrosc 85, 856–863 (2018). https://doi.org/10.1007/s10812-018-0729-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-018-0729-y

Keywords

Navigation