Skip to main content
Log in

A Spectroscopic Study of the Interaction Between the Bismarck Brown R–Eu(III) Complex and DNA

  • Published:
Journal of Applied Spectroscopy Aims and scope

The interaction of the Eu(III)–BBR complex with herring sperm DNA is investigated using an acridine orange (AO) probe for UV-vis absorption spectroscopy and fluorescence spectroscopy. The results indicate that both the AO probe and the Eu(III)–BBR complex can intercalate into the base pairs of DNA. The binding constants of the Eu(III)–BBR complex with DNA are \( {K}_{298.15K}^{\theta } \) = 1.58·104 L/mol and \( {K}_{308.15K}^{\theta } \) = 9.35·104 L/mol, and the binding process is entropydriven.

It is shown that the interaction modes between the Eu(III)–BBR complex and DNA include groove binding and intercalative binding. The mechanism of the interaction between the Eu(III)–BBR complex and DNA will provide an important theoretical basis for the synthesis of new drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Zhang, J. Guo, N. Zhao, and J. Wang, Sens. Actuat. B: Chem., 144, No. 1, 239–246 (2010).

    Article  Google Scholar 

  2. B. R. You, S. Z. Kim, S. H. Kim, and W. H. Park, Mol. Cell. Biochem., 357, No. 1, 295–303 (2011).

    Article  Google Scholar 

  3. D. K. Maurya, N. Nandakumar, and T. P. A. Devasagayam, J. Clin. Biochem. Nutr., 48, No. 1, 85–90 (2010).

    Article  Google Scholar 

  4. A. Faried, D. Kurnia, L. S. Faried, N. Usman, T. Miyazaki, H. Kato, and H. Kuwano, Int. J. Oncol., 30, No. 3, 605–613 (2007).

    Google Scholar 

  5. J. D. Hsu, S. H. Kao, T. T. Ou, Y. J. Chen, Y. J. Li, and C. J. Wang, J. Agric. Food Chem., 59, No. 5, 1996–2003 (2011).

    Article  Google Scholar 

  6. M. López-Lázaro, J. M. Calderón-Montaño, E. Burgos-Morón, and C. A. Austin, Mutagenesis, 26, No. 4, 489–498 (2011).

    Article  Google Scholar 

  7. G. Zhang, J. Guo, J. Pan, X. Chen, and J. Wang, J. Mol. Struct., 923, Nos. 1–3, 114–119 (2009).

    Article  ADS  Google Scholar 

  8. X. Q. He, Q. Y. Lin, R. D. Hu, and X.-H. Lu, Spectrochim. Acta, A: Mol. Biomol. Spectrosc., 68, No. 1, 184–190 (2007).

    Google Scholar 

  9. G. J. Chen, X. Qiao, C. Y. Gao, G. J. Xu, Z. L. Wang, J. L. Tian, J. Y. Xu, W. Gu, X. Liu, and S.-P. Yan, J. Inorg. Biochem., 109, 90–96 (2012).

    Google Scholar 

  10. D. H. Tjahjono, T. Akutsu, N. Yoshioka, and H. Inoue, Biochim. Biophys. Acta (BBA)Gen. Subjects, 1472, Nos. 1–2, 333–343 (1999).

    Article  Google Scholar 

  11. F. Arjmand, S. Parveen, M. Afzal, and M. Shahid, J. Photochem. Photobiol. B: Biol., 114, 15–26 (2012).

    Article  Google Scholar 

  12. Y. Li, Z. Y. Yang, and M. F. Wang, Eur. J. Med. Chem., 44, No. 11, 4585–4595 (2009).

    Article  Google Scholar 

  13. R. Hu, Q. Lin, W. Huang, and Q. Yu, Rare Earths, 23, No. 3, 372–376 (2005).

    Google Scholar 

  14. Z. A. Taha, A. M. Ajlouni, W. Al Momani, and A. A. Al-Ghzawi, Spectrochim. Acta, A: Mol. Biomol. Spectrosc., 81, No. 1, 570–577 (2011).

    Google Scholar 

  15. X. B. Li, A.R. Zhou, W. H. Yu, and X. A. Chen, Rare Earths, 18, No. 2, 156–159 (2000).

    Google Scholar 

  16. V. Trusova, A. Yudintsev, L. Limanskaya, G. Gorbenko, and T. Deligeorgiev, J. Fluoresc., 23, No. 1, 193–202 (2013).

    Article  Google Scholar 

  17. H. A. Azab, S. S. Al-Deyab, Z. M. Anwar, and R. G. Ahmed, J. Chem. Eng. Data, 56, No. 4, 833–849 (2011).

    Article  Google Scholar 

  18. M. Taha, I. Khan, and J. A. P. Coutinho, J. Inorg. Biochem., 157, 25–33 (2016).

    Google Scholar 

  19. F. H. Hussein, M. H. Obies, and A. A. A. Drea, Int. J. Chem. Sci., 8, No. 4, 2763–2774 (2010).

    Google Scholar 

  20. M. W. Girolami and R. W. Rousseau, J. Cryst. Growth, 71, No. 1, 220–224 (1985).

    Article  ADS  Google Scholar 

  21. Y. Miao, Y. Li, Z. Zhang, G. Yan, and Y. Bi, Analyt. Biochem., 475, 32–39 (2015).

    Article  Google Scholar 

  22. E. B. Brauns, C. J. Murphy, and M. A. Berg, J. Am. Chem. Soc., 120, No. 10, 2449–2456 (1998).

    Article  Google Scholar 

  23. R. Christian and K. Thomas, Biochem., 17, No. 23, 4845–4854 (1978).

    Article  Google Scholar 

  24. Y. Ni, S. Du, and S. Kokot, Anal. Chim. Acta, 584, No. 1, 19–27 (2007).

    Article  Google Scholar 

  25. L. X. Xiao, N. Zhao, and X. M. Wang, Lumin., 31, No. 1, 210–216 (2016).

    Article  Google Scholar 

  26. S. Clerc and Y. Barenholz, Anal. Biochem., 259, No. 1, 104–111 (1998).

    Article  Google Scholar 

  27. A. I. Kononov, E. B. Moroshkina, N. V. Tkachenko, and H. Lemmetyinen, J. Phys. Chem. B, 105, No. 2, 535–541 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongbo Li, Yongqiong Tang, Shutao Lei, Zihan You or Suqin Wang.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 85, No. 4, p. 688, July–August, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Tang, Y., Lei, S. et al. A Spectroscopic Study of the Interaction Between the Bismarck Brown R–Eu(III) Complex and DNA. J Appl Spectrosc 85, 791–799 (2018). https://doi.org/10.1007/s10812-018-0720-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-018-0720-7

Keywords

Navigation