Skip to main content
Log in

Influence of Solvent and Electric Field on the Structure and IR, 31P NMR Spectroscopic Properties of a Titanocene–Benzyne Complex

  • Published:
Journal of Applied Spectroscopy Aims and scope

The effect of solvent on the structural, frontier orbital energies, global density-based descriptors, vibrational frequencies, and 31P NMR chemical shifts was examined for the syn-Cp2Ti(η2-C6H4-2-OMe)(PMe3) complex by the self-consistent reaction field theory (SCRF) based on the polarizable continuum model (PCM). The studied spectroscopic parameters were correlated with the Kirkwood–Bauer–Magat (KBM) equation. Also, the response of the global density-based descriptors (chemical potential and hardness) in the presence of external electric field was studied. EDA, QTAIM, ELF, LOL, and NBO analyses were used for illustration of the Ti–C bond in this complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Shao, M. Head-Gordon, and A. I. Krylov, J. Chem. Phys., 118, 4807 (2003).

    Article  ADS  Google Scholar 

  2. F. D. Proft, P. v. R. Schleyer, J. H. v. Lenthe, F. Stahl, and P. Geerlings, Chem. Eur. J., 8, 3402 (2002).

  3. C. E. Smith, T. D. Crawford, D. Cremer, J. Chem. Phys., 122, 174309 (2005).

    Article  ADS  Google Scholar 

  4. L. V. Slipchenko and A. I. Krylov, J. Chem. Phys., 117, 4694 (2002).

    Article  ADS  Google Scholar 

  5. H. Li and M.-B. Huang, Phys. Chem. Chem. Phys., 10, 5381 (2008).

    Article  Google Scholar 

  6. H. Liu, S. Yang, I. Balteanu, O. P. Balaj, B. S. Fox-Beyer, M. K. Beyer, and V. E. Bondybey, Rapid Commun. Mass Spectrom., 18, 1479 (2004).

    Article  Google Scholar 

  7. J. Grafenstein, A. M. Hjerpe, E. Kraka, and D. Cremer, J. Phys. Chem. A, 104, 1748 (2000).

    Article  Google Scholar 

  8. W. Sander, Acc. Chem. Res., 32, 669 (1999).

    Article  Google Scholar 

  9. G. Wittig and F. Bickelhaupt, Chem. Ber., 91, 883 (1958).

    Article  Google Scholar 

  10. J. G. Andino, U. J. Kilgore, M. Pink, A. Ozarowski, J. Krzystek, J. Telser, M.-H. Baik, and D. J. Mindiola, Chem. Sci., 1, 351 (2010).

    Article  Google Scholar 

  11. M. A. Bennett and H. P. Schwemlein, Angew. Chem. Int. Ed. EngI. , 28, 1296 (1989).

    Article  Google Scholar 

  12. R. P. Hughes, R. B. Laritchev, A. Williamson, C. D. Incarvito, L. N. Zakharov, and A. L. Rheingold, Organometallics, 21, 4873 (2002).

    Article  Google Scholar 

  13. M. Retbøll, A. J. Edwards, A. D. Rae, A. C. Willis, M. A. Bennett, and E. Wenger, J. Am. Chem. Soc., 124, 8348 (2002).

    Article  Google Scholar 

  14. V. B. Shur, E. G. Berkovitch, M. E. Vol’pin, B. Lorenz, and M. Wahren, J. Organomet. Chem., 36, 228 (1982).

    Google Scholar 

  15. R. Ghiasi, H. Pasdar, and Z. Ghaffarpour, Phys. Chem.: An Indian J., 8, 119 (2013).

    Google Scholar 

  16. J. Cdmpora and S. L. Buchwa, Organometallics, 12, 4182 (1993).

    Article  Google Scholar 

  17. P. Selvarengan and P. Kolandaivel, J. Mol. Struct: THEOCHEM, 617, 99 (2002).

    Article  Google Scholar 

  18. S. B. Allin, T. M.Leslie, and R. S. Lumpkin, Chem. Mater., 8, 428 (1996).

  19. A. J. A. Aquino, D. Tunega, G. Haberhauer, M. H. Gerzabek, and H. Lischka, J. Phys. Chem. A, 106, 1862 (2002).

    Article  Google Scholar 

  20. Gaussian 09 (Version Revision A.02). Wallingford CT, Gaussian, Inc. (2009).

  21. P. J. Hay, J. Chem. Phys., 66, 4377 (1977).

    Article  ADS  Google Scholar 

  22. R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys., 72, 650 (1980).

    Article  ADS  Google Scholar 

  23. A. D. McLean and G. S. Chandler, J. Chem. Phys., 72, 5639 (1980).

    Article  ADS  Google Scholar 

  24. A. J. H. Wachters, J. Chem. Phys., 52, 1033 (1970).

    Article  ADS  Google Scholar 

  25. D. Rappoport and F. Furche, J. Chem. Phys., 133, 134105 (2010).

    Article  ADS  Google Scholar 

  26. K. L. Schuchardt, B. T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li, and T. L. Windus, J. Chem. Inform. Model., 47, 1045 (2007).

    Article  Google Scholar 

  27. D. Feller, J. Comp. Chem., 17, 1571 (1996).

    Article  Google Scholar 

  28. C. Adamo and V. Barone, J. Chem. Phys., 108, 664 (1998).

    Article  ADS  Google Scholar 

  29. J. Tomasi, B. Mennucci, and R. Cammi, Chem. Rev., 105, 2999 (2005).

    Article  Google Scholar 

  30. N. M. O’Boyle, A. L. Tenderholt, and K. M. Langner, J. Comp. Chem, 29, 839 (2008).

    Article  Google Scholar 

  31. W. Kutzelnigg, U. Fleischer, and M. Schindler, Al–Cl: The IGLO-Method: Ab Initio Calculation and Interpretation of NMR Chemical Shifts and Magnetic Susceptibilities, 23, Springer-Verlag, Heidelberg (1990).

  32. T. Lu, F. Chen, J. Mol. Graphics Model, 38, 314 (2012).

    Article  Google Scholar 

  33. A. E. Reed, L. A. Curtiss, and F. Weinhold, Chem. Rev., 88, 899 (1988).

    Article  Google Scholar 

  34. L. Sobczyk, S. J. Grabowski, and T. M. Krygowski, Chem. Rev., 105, 3513 (2005).

    Article  Google Scholar 

  35. R. F. W. Bader, C. F. Matta, and F. Cortés-Guzman, Organometallics, 23, 6253 (2004).

    Article  Google Scholar 

  36. X. Fradera, M. A. Austen, and R. F. W. Bader, J. Phys. Chem. A, 103, 304 (1999).

    Article  Google Scholar 

  37. R. F. W. Bader and D.-F. Fang, J. Chem. Theor. Comput., 1, 403 (2005).

    Article  Google Scholar 

  38. P. M. Mitrasinovic, Can. J. Chem., 81, 542 (2003).

    Article  Google Scholar 

  39. M. Palusiak, J. Organometallic. Chem., 692, 3866 (2005).

    Article  Google Scholar 

  40. P. Macchi and A. Sironi, Coord. Chem. Rev., 239, 383 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ghiasi.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 85, No. 3, p. 513, May–June, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezazadeh, M., Ghiasi, R. & Jamehbozorgi, S. Influence of Solvent and Electric Field on the Structure and IR, 31P NMR Spectroscopic Properties of a Titanocene–Benzyne Complex. J Appl Spectrosc 85, 526–534 (2018). https://doi.org/10.1007/s10812-018-0683-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-018-0683-8

Keywords

Navigation