Skip to main content
Log in

Role of Ti Content on the Occurrence of the 3309-cm–1 Peak in FTIR Absorption Spectra of Ruby Samples

  • Published:
Journal of Applied Spectroscopy Aims and scope

The study is based on the determination of trace elements in ruby samples, Ti in particular, using laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS). The samples were then divided into three groups: high (≥ 200 ppma), moderate (100–200 ppma), and low (≤ 50 ppma) Ti content. In addition, X-ray absorption spectroscopy (XAS) was employed to confirm that the Ti oxidation state was Ti4+. The heat experiment conditions were set at 800, 1200, and 1650°C to investigate the transformation of the –OH vibration in the FTIR spectra of ruby samples. The FTIR spectra showed that samples containing a low Ti concentration did not show the 3309-cm–1 absorption peak either before or after heating at any of the designed temperatures. An obvious 3309-cm–1 peak appeared only in samples with a moderate to high Ti content after heating at ≥ 1200°C. The results also suggest that, in addition of Ti4+, the occurrence of the 3309-cm–1 peak in the FTIR spectra is strongly affected by the charge compensation of –OH in Al sites, i.e., the structural –OH; thus, the structural –Ti–OH stretching in the ruby samples. Hence, for gemological identification, the 3309-cm–1 peak can be applied to indicate whether a ruby has undergone heat treatment if those samples contain enough Ti ions in their structure, i.e., Ti ≥ 100 ppma. This condition is usually found in ruby samples from major deposits such as Mong Hsu and Mogok, Myanmar; Luc Yen, Vietnam; and Montopuez, Mozambique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Nassau, Am. Min., 63, 219–229 (1978).

    Google Scholar 

  2. A. Peretti, K. Schmetzer, H. J. Bernhardt, and F. Mouawad, Gems. Gemol., 31, 2–26 (1995).

    Article  Google Scholar 

  3. P. Maneeratanasarn, P. Wathanakul, Y. C. Kim, H. M. Choi, and K. B. Shim, J. Korean Crys. Growth Crys. Tech., 21, 55–59 (2011).

    Article  Google Scholar 

  4. L. E. Cartier, J. Gemmol., 31, 171–179 (2009).

    Article  Google Scholar 

  5. B. C. Smith, Fundamentals of Fourier Transform Infrared Spectroscopy, CRC Press, Florida (1996).

    Google Scholar 

  6. H. D. Ruan, R. L. Frost, and J. T. Kloprogge, L. Duong, Spectrochim. Acta A, 58, 967–981 (2002)

    Article  ADS  Google Scholar 

  7. V. A. Kolesova and Ya. I. Ryskin, J. Struct. Chem., 3, 656–659 (1962)

  8. R. L. Frost, H. D. Ruan, and J. T. Kloprogge, J. Raman. Spectrosc., 32, 745–750 (2001)

    Article  ADS  Google Scholar 

  9. C. Smith, J. Gemmol., 24, 321–335 (1995).

    Article  Google Scholar 

  10. F. K. Volynets and V. G. Vorob'ev, E. A. Sidorova, J. Appl. Spectros., 10, 665–667 (1972).

    Article  Google Scholar 

  11. E. Fritsch and C. M. Stockton, Gems. Gemol., 23, 18–26 (1987).

    Article  Google Scholar 

  12. A. R. Moon and M. R. Phillips, Phys. Chem. Solid, 52, 1087–1099 (1991).

    Article  ADS  Google Scholar 

  13. A. Phlayrahan, N. Monarumit, S. Satitkune, and P. Wathanakul. Proc. 5th International Gems & Jewelry Conference (GIT2016), November 14–15, 2016, Chonburi, pp. 167–170 (2016).

  14. A. Beran and R. G. Rossman, Eur. J. Mineral., 18, 441–447 (2006).

    Article  ADS  Google Scholar 

  15. A. Beran, Eur. J. Mineral., 3, 971–975 (1991).

    Article  ADS  Google Scholar 

  16. A. Phlayrahan, N. Monarumit, S. Satitkune, and P. Wathanakul. Proc. 4th International Gems & Jewelry Conference (GIT2014), December 8–9, 2014, Chiangmai, Thailand, pp. 211–216 (2014).

  17. W. Klysuban, P. Sombunchoo, N. Wongprachanukul, P. Tarawarakarn, S. Klinkhieo, and P. Songsiriritthigul, J. Nucl. Instrum. Meth. Phys. Res., 582, 87–89 (2007).

  18. S. Achiwawanich, N. Brack, B. D. James, and J. Liesegang, Appl. Surf. Sci., 252, 8646–8650 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Phlayrahan.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 85, No. 3, pp. 376–381, May–June, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phlayrahan, A., Monarumit, N., Satitkune, S. et al. Role of Ti Content on the Occurrence of the 3309-cm–1 Peak in FTIR Absorption Spectra of Ruby Samples. J Appl Spectrosc 85, 385–390 (2018). https://doi.org/10.1007/s10812-018-0662-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-018-0662-0

Keywords

Navigation