Skip to main content
Log in

YAG:Er3+, CaF2:Er3+, and Er2O3 Emission Spectra Under Laser and Laser Thermal Excitation

  • Published:
Journal of Applied Spectroscopy Aims and scope

Experimental luminescence and selective-emission (SE) spectra of YAG:Er3+ (10 at.%) and CaF2:Er3+ (1 at.%) single crystals and Er2O3 polycrystal under laser and laser thermal excitation of the Er3+-ion multiplets are compared. Luminescence spectra under resonant excitation are determined by multiplet population relaxation with the corresponding radiative and nonradiative probabilities. The form of the SE spectra is determined by the thermal population of the multiplets and the probabilities of only radiative transitions. The SE band at 800 nm (4I9/24I15/2) is an indicator of high-temperature thermal emission of Er3+ ions. The absence of this band in luminescence spectra is explained by the short lifetime of the τ(4I9/2) level of 53 ns at T = 300 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. V. Zharikov, V. I. Zhekov, L. A. Kulevskii, T. M. Murina, V. V. Osiko, A. M. Prokhorov, A. D. Savel′ev, V. V. Smirnov, B. P. Starikov, and M. I. Timoshechkin, Kvantovaya Elektron. (Moscow), 1, 1867–189 (1974).

  2. Kh. S. Bagdasarov, V. I. Zhekov, V. A. Lobachev, A. A. Manenkov, T. M. Murina, A. M. Prokhorov, M. I. Studenikin, and E. A. Fedorov, Tr. Inst. Obshch. Fiz., Akad. Nauk SSSR, Vol. 19, Nauka, Moscow (1989), p. 8.

  3. D.-W. Chen, C. L. Fincher, T. S. Rose, F. L. Vernon, and R. A. Fields, Opt. Lett., 24, 385–387 (1999).

    Article  ADS  Google Scholar 

  4. D. Garbuzov, I. Kudryashov, and M. Dubinskii, Appl. Phys. Lett., 86, 131115 (2005).

    Article  ADS  Google Scholar 

  5. J. W. Kim, D. Y. Shen, J. K. Sahu, and W. A. Clarkson, Opt. Express, 16, 5807–5812 (2008).

    Article  ADS  Google Scholar 

  6. K. M. Chen, S. Saini, M. Lipson, X. Duan, and L. C. Kimerling, Proc. SPIE Int. Soc. Opt. Eng., 4282, 168–173 (2001).

    ADS  Google Scholar 

  7. S. Saini, K. Chen, X. Duan, J. Michel, L. C. Kimerling, and M. Lipson, J. Electron. Mater., 33, 809–814 (2004).

    Article  ADS  Google Scholar 

  8. M. Miritello, R. Lo Savio, A. M. Piro, G. Franzo, F. Priolo, F. Iacona, and C. J. Bongiorno, J. Appl. Phys., 100, 013502 (2006).

    Article  ADS  Google Scholar 

  9. C. P. Michael, H. B. Yuen, V. A. Sabnis, T. J. Johnson, R. Sewell, R. Smith, A. Jamora, A. Clark, S. Semans, P. B. Atanackovic, and O. Painter, Opt. Express, 16, 19649–19666 (2008).

    Article  ADS  Google Scholar 

  10. D. L. Chubb, Fundamentals of Thermophotovoltaic Energy Conversion, Elsevier, Amsterdam, Boston, Oxford (2007).

    Google Scholar 

  11. D. Diso, A. Licciulli, A. Bianco, M. Lomascolo, G. Leo, M. Mazzer, S. Tundo, G. Torsello, and A. Maffezzoli, Mater. Sci. Eng., B, 98, 144–149 (2003).

    Article  Google Scholar 

  12. W. J. Tobler and W. Durisch, Appl. Energy, 85, 483–493 (2008).

    Article  Google Scholar 

  13. E. K. Tanyi, B. T. Burton, E. E. Narimanov, and M. A. Noginov, Sci. Rep., 7, No. 2040, 1–11 (2017).

    Google Scholar 

  14. D. K. Sardar, C. C. Russell, J. B. Gruber, and T. H. Allik, J. Appl. Phys., 97, 123501 (2005).

    Article  ADS  Google Scholar 

  15. M. Pokhrel, G. A. Kumar, P. Samuel, K. I. Ueda, T. Yanagitani, H. Yagi, and D. K. Sardar, Opt. Mater. Express, 1, 1272–1285 (2011).

    Article  Google Scholar 

  16. S. A. Pollack, J. Chem. Phys., 40, 2751–2767 (1964).

    Article  ADS  Google Scholar 

  17. Yu. K. Voron′ko, A. A. Kaminskii, and V. V. Osiko, J. Exp. Theor. Phys., 50, 10–15 (1966).

  18. G. Qin, J. Lu, J. F. Bisson, Y. Feng, K.-I. Ueda, H. Yagi, and T. Yanagitani, Solid State Commun., 132, 103–106 (2004).

    Article  ADS  Google Scholar 

  19. H. L. Xu and S. Kroll, J. Lumin., 111, 191–198 (2005).

    Article  Google Scholar 

  20. H. G. Yang, Z.-W. Dai, and N.-N. Zu, Chin. Phys., 16, 1650–1654 (2007).

    Article  ADS  Google Scholar 

  21. J. Zhou, W. Zhang, T. Huang, L. Wang, J. Li, W. Liu, B. Jiang, Y. Pan, and J. Guo, Ceram. Int., 37, 513–519 (2011).

    Article  Google Scholar 

  22. E. Cavalli, L. Esposito, J. Hostasa, and M. Pedroni, J. Eur. Ceram. Soc., 33, 1425–1434 (2013).

    Article  Google Scholar 

  23. V. M. Marchenko, M. G. Voitik, and V. A. Yuryev, Laser Phys., 18, 756–761 (2008).

    Article  ADS  Google Scholar 

  24. J. Wang, J. H. Hao, and P. A. Tanner, Opt. Express, 19, 11753–11758 (2011).

    Article  ADS  Google Scholar 

  25. J. Wang, J. H. Hao, and P. A. Tanner, J. Lumin., 164, 116–122 (2015).

    Article  Google Scholar 

  26. G. E. Guazzoni, Appl. Spectrosc., 26, 60–65 (1972).

    Article  ADS  Google Scholar 

  27. V. M. Marchenko, L. D. Iskhakova, and M. V. Studenikin, Kvantovaya Elektron. (Moscow), 43, 859–864 (2013).

    Article  Google Scholar 

  28. F. Auzel, Chem. Rev., 104, 139–173 (2004).

    Article  Google Scholar 

  29. S. Du. L. Jiang, W. Zhang, W. Gong, Z. Fu, and Z. Dai, Appl. Phys. B: Lasers Opt., 103, 857–861 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Marchenko.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 85, No. 2, pp. 226–230, March–April, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marchenko, V.M. YAG:Er3+, CaF2:Er3+, and Er2O3 Emission Spectra Under Laser and Laser Thermal Excitation. J Appl Spectrosc 85, 246–249 (2018). https://doi.org/10.1007/s10812-018-0639-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-018-0639-z

Keywords

Navigation