Skip to main content
Log in

Spectral Analysis of 3-(Adamantan-1-yl)-4-Ethyl-1-[(4-Phenylpiperazin-1-yl) Methyl]-1H-1,2,4-Triazole-5(4H)-Thione

  • Published:
Journal of Applied Spectroscopy Aims and scope

Vibrational IR (3200–650 cm–1) and Raman spectra (3200–150 cm–1) of adamantane-containing 3-(adamantan-1-yl)-4-ethyl-1-[(4-phenylpiperazin-1-yl)methyl]-1H-1,2,4-triazole-5(4H)-thione, which is promising for drug design, were examined. The UV/Vis spectrum (450–200 nm) of the compound in EtOH was measured. Full geometry optimization using density functional theory (DFT) in the B3LYP/cc-pVDZ approximation allowed the equilibrium configuration of the molecule to be determined and IR and Raman spectra to be calculated. Based on these, the experimental vibrational IR and Raman spectra were interpreted and the biological activity indices were predicted. The UV/Vis spectrum of the title compound was simulated at the time-dependent DFT/CAM-B3LYP/cc-pVDZ level with and without solvent effects and at the ab initio multi-reference perturbation theory XMCQDPT2 level. The UV/Vis spectrum that was simulated using the multi-reference XMCQDPT2 approximation agreed very successfully with the experimental data, in contrast to the single-reference DFT method. This was probably a consequence of intramolecular charge transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Lamoureux and G. Artavia, Curr. Med. Chem., 17, 2967–2978 (2010).

    Article  Google Scholar 

  2. J. Liu, D. Obando, V. Liao, T. Lifa, and R. Codd, Eur. J. Med. Chem., 46, 1949–1963 (2011).

    Article  Google Scholar 

  3. G. Ali Mansoori, P. L. Barros de Araujo, and E. Silvano de Araujo, Diamondoid Molecules: With Applications in Biomedicine, Materials Science, Nanotechnology & Petroleum Science, World Scientific Publishing (2012).

  4. F. G. Hayden, Antiviral Res., 71, 372–378 (2006).

    Article  Google Scholar 

  5. M.-J. Perez-Perez, J. Balzarini, M. Hosoya, E. De Clercq, and M.-J. Camarasa, Bioorg. Med. Chem. Lett., 2, 647–648 (1992).

    Article  Google Scholar 

  6. I. Stylianakis, A. Kolocouris, N. Kolocouris, G. Fytas, G. B. Foscolos, E. Padalko, J. Neyts, and E. De Clercq, Bioorg. Med. Chem. Lett., 13, 1699–1703 (2003).

    Article  Google Scholar 

  7. N. A. Ilyushina, N. V. Bovin, R. G. Webster, and E. A. Govorkova, Antiviral Res., 70, 121–131 (2006).

    Article  Google Scholar 

  8. G. Zoidis, C. Fytas, I. Papanastasiou, G.B. Foscolos, G. Fytas, E. Padalko, E. De Clercq, L. Naesens, J. Neyts, and N. Kolocouris, Bioorg. Med. Chem., 14, 3341–3348 (2006)

    Article  Google Scholar 

  9. A. A. El-Emam, O. A. Al-Deeb, M. A. Al-Omar, and J. Lehmann, Bioorg. Med. Chem., 12, 5107–5113 (2004).

    Article  Google Scholar 

  10. M. Protopopova, C. Hanrahan, B. Nikonenko, R. Samala, P. Chen, J. Gearhart, L. Einck, and C. A. Nacy, J. Antimicrob. Chemother., 56, 968–974 (2005).

    Article  Google Scholar 

  11. A. A. El-Emam, A.-M. S. Al-Tamimi, M. A. Al-Omar, K. A. Alrashood, and E. E. Habib, Eur. J. Med. Chem., 68, 96–102 (2013).

    Article  Google Scholar 

  12. A. A. Kadi, E. S. Al-Abdullah, I. A. Shehata, E. E. Habib, T. M. Ibrahim, and A. A. El-Emam, Eur. J. Med. Chem., 45, 5006–5011 (2010).

    Article  Google Scholar 

  13. K. Omar, A. Geronikaki, P. Zoumpoulakis, C. Camoutsis, M. Sokovic, A. Ciric, and J. Glamoclija, Bioorg. Med. Chem., 18, 426–432 (2010).

    Article  Google Scholar 

  14. A. A. Kadi, N. R. El-Brollosy, O. A. Al-Deeb, E. E. Habib, T. M. Ibrahim, and A. A. El-Emam, Eur. J. Med. Chem., 42, 235–242 (2007).

    Article  Google Scholar 

  15. E. S. Al-Abdullah, H. H. Asiri, S. Lahsasni, E. E. Habib, T. M. Ibrahim, and A. A. El-Emam, Drug Des., Dev. Ther., 8, 505–518 (2014).

    Google Scholar 

  16. O. Kouatly, A. Geronikaki, C. Kamoutsis, D. Hadjipavlou-Litina, and P. Eleftheriou, Eur. J. Med. Chem., 44, 1198–1204 (2009).

    Article  Google Scholar 

  17. O. A. Al-Deeb, M. A. Al-Omar, N. R. El-Brollosy, E. E. Habib, T. M. Ibrahim, and A. A. El-Emam, Arzneim. Forsch./Drug Res., 56, 40–47 (2006).

    Google Scholar 

  18. S. Riganas, I. Papanastasiou, G. B. Foscolos, A. Tsotinis, J.-J. Bourguignon, G. Serin, J.-F. Mirjolet, K. Dimas, V. N. Kourafalos, A. Eleutheriades, V. I. Moutsos, H. Khan, S. Georgakopoulou, A. Zaniou, M. Prassa, M. Theodoropoulou, S. Pondiki, and A. Vamvakides, Bioorg. Med. Chem., 20, 3323–3331 (2012).

    Article  Google Scholar 

  19. A. A. El-Emam, E. S. Al-Abdullah, H. M. Al-Tuwaijri, M. Said-Abdelbaky, and S. Garcia-Granda, Acta Crystallogr., Sect. E: Struct. Rep. Online, 68, o2380–o2381 (2012).

    Article  Google Scholar 

  20. M. B. Shundalau, E. S. Al-Abdullah, E. V. Shabunya-Klyachkovskaya, A. V. Hlinisty, O. A. Al-Deeb, A. A. El-Emam, and S. V. Gaponenko, J. Mol. Struct., 1115, 258–266 (2016).

    Article  ADS  Google Scholar 

  21. A. M. Andrianov, I. A. Kashyn, V. M. Andrianov, M. B. Shundalau, A. V. Hlinisty, S. V. Gaponenko, E. V. Shabunya-Klyachkovskaya, A. Matsukovich, A.-M. S. Al-Tamimi, and A. A. El-Emam, J. Chem. Sci., 128, 1933–1942 (2016).

    Article  Google Scholar 

  22. M. Shundalau, Y. Mindarava, A. Matsukovich, S. Gaponenko, and A. A. El-Emam, in: Abstracts of the XIVth International Conference on Molecular Spectroscopy (ICMS2017), Bialka Tatrzanska, Poland (2017), p. 136.

  23. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, Jr., J. Comput. Chem., 14, 1347–1363 (1993).

    Article  Google Scholar 

  24. B. M. Bode and M. S. Gordon, J. Mol. Graphics Modell., 16, 133–138 (1998).

    Article  Google Scholar 

  25. L. J. Farrugia, J. Appl. Crystallogr., 30, 565 (1997).

    Article  Google Scholar 

  26. T. H. Dunning, Jr., J. Chem. Phys., 90, 1007–1023 (1989).

    Article  ADS  Google Scholar 

  27. A. D. Becke, J. Chem. Phys., 98, 5648–5652 (1993).

  28. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B: Condens. Matter Mater. Phys., 37, 785–789 (1988).

  29. P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem., 98, 11623–11627 (1994).

    Article  Google Scholar 

  30. E. Runge and E. K. U. Gross, Phys. Rev. Lett., 52, 997–1000 (1984).

    Article  ADS  Google Scholar 

  31. K. Burke, J. Werschnik, and E. K. U. Gross, J. Chem. Phys., 123, 062206 (2005).

    Article  ADS  Google Scholar 

  32. T. Yanai, D. P. Tew, and N. C. Handy, Chem. Phys. Lett., 393, 51–57 (2004).

    Article  ADS  Google Scholar 

  33. A. V. Marenich, C. J. Cramer, and D. G. Truhlar, J. Phys. Chem. B, 113, 6378–6396 (2009).

    Article  Google Scholar 

  34. A. A. Granovsky, J. Chem. Phys., 134, 214113 (2011).

    Article  ADS  Google Scholar 

  35. Alex A. Granovsky, Firefl y version 8; http://classic.chem.msu.su/gran/fi refly/index.html.

  36. A. Lagunin, A. Stepanchikova, D. Filimonov, and V. Poroikov, Bioinformatics, 16, 747–748 (2000).

    Article  Google Scholar 

  37. PASS Online; http://way2drug.com/passonline/index.php.

  38. G. A. Pitsevich, M. B. Shundalau, M. A. Ksenofontov, and D. S. Umreiko, Global J. Anal. Chem., 2, 114–124 (2011).

    Google Scholar 

  39. V. Arjunan, T. Rani, C. V. Mythili, and S. Mohan, Spectrochim. Acta, Part A, 79, 486–496 (2011).

    Article  ADS  Google Scholar 

  40. I. Hargittai and K. Hedberg, in: Molecular Structures and Vibrations, S. J. Cyvin (Ed.), Elsevier Publishing Co., New York (1972), pp. 340–357.

  41. N. W. Larsen, J. Mol. Struct., 51, 175–190 (1979).

    Article  ADS  Google Scholar 

  42. S. Gunasekaran and B. Anita, Indian J. Pure Appl. Phys., 46, 833–838 (2008).

    Google Scholar 

  43. K. Kuchitsu (Ed.), Structure of Free Polyatomic Molecules. Basic Data, Springer (1998).

    Google Scholar 

  44. L. Bistricic, G. Baranovic, and K. Mlinaric-Majerski, Spectrochim. Acta, Part A, 51, 1643–1664 (1995).

    Article  ADS  Google Scholar 

  45. E. I. Bagrii, Adamantanes: Preparation, Properties, Applications [in Russian], Nauka, Moscow (1989).

    Google Scholar 

  46. R. M. Silverstein, F. X. Webster, and D. J. Kiemle, Spectrometric Identification of Organic Compounds, 7th edn., Wiley & Sons, Inc., (2005).

  47. L. Goodman, A. G. Ozkabak, and S. N. Thakur, J. Phys. Chem., 95, 9044–9058 (1991).

    Article  Google Scholar 

  48. P. J. Hendra and D. B. Powell, Spectrochim. Acta, 18, 299–306 (1962).

    Article  ADS  Google Scholar 

  49. O. Alver, C. Parlak, and M. Şenyel, Spectrochim. Acta, Part A, 67, 793–801 (2007).

    Article  ADS  Google Scholar 

  50. S. A. Kudchadker and C. N. R. Rao, Indian J. Chem., 11, 140–142 (1973).

    Google Scholar 

  51. F. Billes, H. Endredi, and G. Keresztury, J. Mol. Struct.: THEOCHEM, 530, 183–200 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Shundalau.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 85, No. 2, pp. 181–193, March–April, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mindarava, Y.L., Shundalau, M.B., Al-Wahaibi, L.H. et al. Spectral Analysis of 3-(Adamantan-1-yl)-4-Ethyl-1-[(4-Phenylpiperazin-1-yl) Methyl]-1H-1,2,4-Triazole-5(4H)-Thione. J Appl Spectrosc 85, 203–215 (2018). https://doi.org/10.1007/s10812-018-0633-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-018-0633-5

Keywords

Navigation