Skip to main content
Log in

Visualization of Porphyrin-Based Photosensitizer Distribution from Fluorescence Images In Vivo Using an Optimized RGB Camera

  • Published:
Journal of Applied Spectroscopy Aims and scope

A handheld RGB camera was developed to monitor the in vivo distribution of porphyrin-based photosensitizer (PS) hematoporphyrin monomethyl ether (HMME) in blood vessels during photodynamic therapy (PDT). The focal length, f-number, International Standardization Organization (ISO) sensitivity, and shutter speed of the camera were optimized for the solution sample with various HMME concentrations. After the parameter optimization, it was found that the red intensity value of the fluorescence image was linearly related to the fluorescence intensity under investigated conditions. The RGB camera was then used to monitor the in vivo distribution of HMME in blood vessels in a skin-fold window chamber model. The red intensity value of the recorded RGB fluorescence image was found to be linearly correlated to HMME concentrations in the range 0–24 μM. Significant differences in the red to green intensity ratios were observed between the blood vessels and the surrounding tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. C. Wilson and M. S. Patterson, Phys. Med. Biol., 53, R61–R109 (2008).

    Article  ADS  Google Scholar 

  2. B. W. Pogue, J. T. Elliott, S. C. Kanick, S. C. Davis, K. S. Samkoe, E. V. Maytin, S. P. Pereira, and T. Hasan, Phys. Med. Biol., 61, R57–R89 (2016).

    Article  ADS  Google Scholar 

  3. M. P. Samtsov, D. S. Tarasau, K. N. Kaplevsky, E. S. Voropy, P. T. Petrov, and Y. P. Istomin, J. Appl. Spectrosc., 83, No. 1, 79–84 (2016).

    Article  ADS  Google Scholar 

  4. B. Li, L. Lin, H. Lin, and B. C. Wilson, J. Biophoton., 9, No. 11, 1314–1325 (2016).

    Article  Google Scholar 

  5. J. Xue, C. Li, H. Liu, J. Wei, N. Chen, and J. Huang, Photodiagn. Photodyn. Ther., 8, 267–274 (2011).

    Article  Google Scholar 

  6. S. Iinuma, K. T. Schomacker, G. Wagnieres, M. Rajadhyaksha, and M. Bamberg, Cancer Res., 59, 6164–6170 (1999).

    Google Scholar 

  7. B. W. Pogue, C. Sheng, J. Benevides, D. Forcione, B. Puricelli, N. Nishioka, and T. Hasan, J. Biomed. Opt., 13, 034009 (2008).

    Article  ADS  Google Scholar 

  8. C. W. Lin, J. R. Shulok, Y. K. Wong, C. F. Schanbacher, L. Cincotta, and J. W. Foley, Cancer Res., 51, 1109–1116 (1991).

    Google Scholar 

  9. G. G. Miller, K. Brown, R. B. Moore, M. S. McPhee, Z. J. Diwu, J. Liu, L. Huang, J. W. Lown, D. A. Begg, V. Chlumecky, and J. Tulip. Photochem. Photobiol., 61, 632–638 (1995).

    Article  Google Scholar 

  10. P. A. Valdés, F. Leblond, V. L. Jacobs, B. C. Wilson, K. D. Paulsen, and D. W. Roberts, Sci. Rep., 2, 798 (2012).

    Article  ADS  Google Scholar 

  11. M. D. Glidden, J. P. Celli, I. Massodi, I. Rizvi, B. W. Pogue, and T. Hasan, Theranostics, 2, 827–839 (2012).

    Article  Google Scholar 

  12. D. Jakovels, J. Spigulis, and L. Rogule, Proc. SPIE, 8087, 80872B (2011).

    Article  ADS  Google Scholar 

  13. I. Nishidate, N. Tanaka, T. Kawase, T. Maeda, T. Yuasa, Y. Aizu, T. Yuasa, and K. Niizeki, J. Biomed. Opt., 16, 086012 (2011)

    Article  ADS  Google Scholar 

  14. D. Jakovels, I. Kuzmina, A. Berzina, L. Valeine, and J. Spigulisa, J. Biomed. Opt., 18, 126019 (2013).

    Article  ADS  Google Scholar 

  15. I. Nishidate, Y. Harasaki, S. Kawauchi, S. Sato, M. Sato, and Y. Kokubo, Proc. SPIE, 9690, 96900Q (2016).

    Article  ADS  Google Scholar 

  16. S. Yu, L. Lin, and H. Lin, J. Optoelectron. Laser, 19, 1283–1286 (2008).

    Google Scholar 

  17. M. Lv, F. Qin, L. Mao, L. Zhang, S. Lv, J. Jin, and Z. Zhang, Laser. Med. Sci., 30, 2151–2156 (2015).

    Article  Google Scholar 

  18. G. M. Palmer, A. N. Fontanella, S. Shan, G Hanna, G. Zhang, C. L. Fraser, and M. W. Dewhirst, Nat. Protoc., 6, 1355–1366 (2011).

    Article  Google Scholar 

  19. L. C. Courrol, F. R. de Oliveira Silva, E. L. Coutinho, M. F. Piccoli, R. D. Mansano, N. D. Vieira Jur., N. Schor, and M. H. Bellini, J. Fluoresc., 17, 289–292 (2007).

  20. V. Masilamani, K. Al-Zhrani, M. Al-Salhi, A. Al-Diab, and M. Al-Ageily, J. Lumin., 109, 143–154 (2004).

    Google Scholar 

  21. L. Liu, L. Lin, W. Li, C. Yang, Z. Huang, S. Xie, and B. Li, Proc. SPIE, 8577, 857703 (2013).

    Article  Google Scholar 

  22. L. Lin, H. Lin, D. Chen, L. Chen, M. Wang, S. Xie, Y. Gu, B. C. Wilson, and B. Li, Proc. SPIE, 9129, 912920 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Li.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 84, No. 6, p. 1018, November–December, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Huang, Z., Qiu, Z. et al. Visualization of Porphyrin-Based Photosensitizer Distribution from Fluorescence Images In Vivo Using an Optimized RGB Camera. J Appl Spectrosc 84, 1124–1130 (2018). https://doi.org/10.1007/s10812-018-0597-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-018-0597-5

Keywords

Navigation