Skip to main content
Log in

Quantitative Analysis of Magnesium in Soil by Laser-Induced Breakdown Spectroscopy Coupled with Nonlinear Multivariate Calibration

  • Published:
Journal of Applied Spectroscopy Aims and scope

Laser-induced breakdown spectroscopy (LIBS) coupled with the nonlinear multivariate regression method was applied to analyze magnesium (Mg) contents in soil. The plasma was generated using a 100 mJ Nd:YAG pulsed laser, and the spectra were acquired using a multi-channel spectrometer integrated with a CCD detector. The line at 383.8 nm was selected as the analysis line for Mg. The calibration model between the intensity of characteristic line and the concentration of Mg was constructed. The traditional calibration curve showed that the concentration of Mg was not only related to the line intensity of itself, but also to other elements in soil. The intensity of characteristic lines for Mg (Mg I 383.8 nm), manganese (Mn) (Mn I 403.1 nm), and iron (Fe) (Fe I 407.2 nm) were used as input data for nonlinear multivariate calculation. According to the results of nonlinear regression, the ternary nonlinear regression was the most appropriate of the studied models. A good agreement was observed between the actual concentration provided by inductively coupled plasma mass spectrometry (ICP-MS) and the predicted value obtained using the nonlinear multivariate regression model. The correlation coefficient between predicted concentration and the measured value was 0.987, while the root mean square error of calibration (RMSEC) and root mean square error of prediction (RMSEP) were reduced to 0.017% and 0.014%, respectively. The ratio of the standard deviation of the validation to the RMSEP increased to 8.79, and the relative error was below 1.21% for nine validation samples. This indicated that the multivariate model can obtain better predicted accuracy than the calibration curve. These results also suggest that the LIBS technique is a powerful tool for analyzing the micro-nutrient elements in soil by selecting calibration and validation samples with similar matrix composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy, Wiley (2013).

  2. R. Noll, Laser-Induced Breakdown Spectroscopy (LIBS): Fundamentals and Aapplications, Springer (2012).

  3. Madhavi Martin, Rodger C. Martin, Steve Allman, Deanne Brice, Ann Wymore, and Nicolas Andre, Spectrochim. Acta B, 114, 65 (2015).

    Article  ADS  Google Scholar 

  4. E. Negre, V. Motto-Ros, F. Pelascini, S. Lauper, D. Denis, and Jin Yu, J. Anal. At. Spectrom., 30, 417 (2015).

    Article  Google Scholar 

  5. Tran X. Phuoc, Ping Wang, and Dustin McIntyre, Fuel, 163, 129 (2016).

    Article  Google Scholar 

  6. F. J. Fortes, M. D. Perez-Carceles, A. Sibon, A. Luna, and J. Javier Laserna, Int. J. Legal Med., 129, 807 (2015).

    Article  Google Scholar 

  7. M. A. Aguirre, E. J. Selva, M. Hidalgo, and A. Canals, Talanta, 131, 348 (2015).

    Article  Google Scholar 

  8. M. A. Gondal, M. A. Shemis, A. A. I. Khalil, M. M. Nasr, and B. Gondal, J. Anal. Atom Spectrom., 31, 506 (2016).

    Article  Google Scholar 

  9. D. Diaz, D. W. Hahn, and A. Molina, Appl. Spectrosc., 66, 99 (2012).

    Article  ADS  Google Scholar 

  10. F. C. Alviraa, G. M. Bilmes, T. Floresc, and L. Ponce, Appl. Spectrosc., 69, 1205 (2015).

    Article  ADS  Google Scholar 

  11. B. S. Marangoni, K. S. G. Silva, G. Nicolodelli, G. S. Senesi, J. S. Cabral, P. R. Villas-Boas, C. S. Silva, P. C. Teixeira, A. R. A. Nogueira, V. M. Benitesf, and D. M. B. P. Milori, Anal. Methods, 8, 78 (2016).

    Article  Google Scholar 

  12. Krishna K. Ayyalasomayajula, Fang Yu-Yueh, Jagdish P. Singh, Dustin L. McIntyre, Jinesh Jain, Appl. Opt., 51, B149 (2012).

    Article  Google Scholar 

  13. R. S. Bricklemyer, D. J. Brown, J. E. Barefield, and S. M. Clegg, Soil Sci. Soc. Am. J., 75, 1006 (2001).

    Article  Google Scholar 

  14. D. M. Dong, C. J. Zhao, W. G. Zheng, X. D. Zhao, and L. Z. Jiao, Spectrosc Lett., 46, 421 (2013).

    Article  ADS  Google Scholar 

  15. Cuiping Lu, Liusan Wang, Haiying Hu, Zhong Zhuang, Yubing Wang, Rujing Wang, and Liangtu Song, Chin Opt Lett., 11, 053004 (2013).

    Article  ADS  Google Scholar 

  16. P. R. Villas-Boas, R. Arnon Romano, M. A. de Menezes Franco, E. C. Ferreira, E. José Ferreira, S. Crestana, and D. Marcondes Bastos Pereira Milori, Geoderma, 263, 195 (2016).

  17. Wang Shaolong, Wang Yangen, Chen Shanjun, and Chen Qi, Plasma Sci. Technol., 17, 716 (2016).

    Article  ADS  Google Scholar 

  18. W. Tawfik, W. A. Farooq, F. N. Al-Mutairi, and Z. A. Alahmed, Laser Eng., 32, 129 (2015).

    Google Scholar 

  19. T. F. Boucher, M. V. Ozanne, M. L. Carmosino, M. Darby Dyar, S. Mahadevan, E. A. Breves, K. H. Lepore, and S. M. Clegg, Spectrochim. Acta B, 107, 1 (2015).

    Article  ADS  Google Scholar 

  20. D. L. Death, A. P. Cunningham, and L. J. Pollard, Spectrochim. Acta B, 63, 763 (2008).

    Article  ADS  Google Scholar 

  21. M. D. Dyar, M. L. Carmosino, E. A. Breves, M. V. Ozanne, S. M. Clegg, and R. C. Wiens, Spectrochim. Acta B, 70, 51 (2012).

    Article  ADS  Google Scholar 

  22. S. Laville, M. Sabsabi, and F. R. Doucet, Spectrochim. Acta B, 62, 1557 (2007).

    Article  ADS  Google Scholar 

  23. Feng, L. Li, W. Ni, and Z. Li, J. Anal. At. Spectrom., 26, 2289 (2011).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Yongcheng.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 84, No. 4, p. 673, July–August, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yongcheng, J., Wen, S., Baohua, Z. et al. Quantitative Analysis of Magnesium in Soil by Laser-Induced Breakdown Spectroscopy Coupled with Nonlinear Multivariate Calibration. J Appl Spectrosc 84, 731–737 (2017). https://doi.org/10.1007/s10812-017-0537-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-017-0537-9

Keywords

Navigation