Skip to main content
Log in

Fluorescence Quenching of Carboxyfluoresceins Conjugated Convalently to Oligonucleotides

  • Published:
Journal of Applied Spectroscopy Aims and scope

Dynamic and static quenching of 6-(2′,7′-dimethoxy-4′,5′-dichloro)carboxyfluorescein (JOE) by nucleosides (deoxyadenosine, deoxycytidine, deoxyguanosine, thymidine, and deoxyuridine) in Tris-acetate buffer solution was analyzed using the Stern–Volmer equation. Only one of the five nucleosides, deoxyguanosine, exhibited predominantly static quenching. The fluorescence quantum yields in buffer solution of 5- and 6-carboxyfluorescein (FAM) and 5-and 6-JOE bound covalently to the oligonucleotide by a rigid linker (4-trans-aminocyclohexanol) were greater than those of their analogs with a flexible linker (6-aminohexanol). It was shown that fluorescence quenching in systems with a flexible linker occurred mainly through van-der-Waals contact of the fluorophore with guanine. An increase in the number of consecutively located guanines in the oligonucleotides and their duplexes bound to the dye by a linker decreased the fluorescence quantum yield. Quantum-chemical calculations using the Gaussian 09 program provided an interpretation for the low-frequency shifts of 5-FAM and 5-JOE absorption and fluorescence spectra relative to those of the 6-isomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Doose, H. Neuweiler, and M. Sauer, Chem. Phys. Chem., 10, 1389–1398 (2009).

    Article  Google Scholar 

  2. C. A. M. Seidel, A. Schulz, and M. H. M. Sauer, J. Phys. Chem., 100, 5541–5553 (1996).

    Article  Google Scholar 

  3. M. Torimura, S. Kurata, K. Yamada, T. Yokomaku, Y. Kamagata, T. Kanagawa, and R. Kurane, Anal. Sci., 17, 155–160 (2001).

    Article  Google Scholar 

  4. X. Li, R. Zhu, A. Yu, and X. S. Zhao, J. Phys. Chem. B, 115, 6265–6271 (2011).

    Article  Google Scholar 

  5. R. Zhu, X. Li, X. S. Zhao, and A. Yu, J. Phys. Chem. B, 115, 5001–5007 (2011).

    Article  Google Scholar 

  6. S. O. Kelley, R. E. Holmlin, E. D. A. Stemp, and J. K. Barton, J. Am. Chem. Soc., 119, 9861–9870 (1997).

    Article  Google Scholar 

  7. A. O. Crockett and C. T. Wittwer, Anal. Biochem., 290, 89–97 (2001).

    Article  Google Scholar 

  8. Y. Ueno, G.-S. Jiao, and K. Burgess, Synthesis, 15, 2591–2593 (2004).

    Google Scholar 

  9. M. H. Lyttle, T. G. Carter, and R. M. Cook, Org. Process Res. Dev., 5, 45–49 (2001).

    Article  Google Scholar 

  10. M. Kubista, J. M. Andrade, M. Bengtsson, A. Forootan, J. Jonak, K. Lind, R. Sindelka, R. Sjoback, B. Shogreen, L. Strombom, A. Stahlberg, and N. Zoric, Mol. Aspects Med., 27, 95–125 (2006).

    Article  Google Scholar 

  11. B. Nagy, J. Pediatr. Genet., 2, 1–8 (2013).

    Google Scholar 

  12. E. Navarro, G. Serrano-Heras, M. J. Castano, and J. Solera, Clin. Chim. Acta, 439, 231–250 (2015).

    Article  Google Scholar 

  13. N. T. Salihah, M. M. Hossain, H. Lubis, and M. U. Ahmed, J. Food Sci. Technol., 53, 2196–2209 (2016).

    Article  Google Scholar 

  14. M. V. Kvach, I. A. Stepanova, I. A. Prokhorenko, A. P. Stupak, D. A. Bolibrukh, V. A. Korshun, and V. V. Shmanai, Bioconjugate Chem., 20, 1673–1682 (2009).

    Article  Google Scholar 

  15. S. Nie, D. T. Chiu, and R. N. Zare, Science, 266, 1018–1021 (1994).

    Article  ADS  Google Scholar 

  16. H. Jurga-Nowak, E. Banachowicz, A. Dobek, and A. Patkowski, J. Phys. Chem. B, 108, 2744–2750 (2004).

    Article  Google Scholar 

  17. M. Tremayne, B. M. Kariuki, and K. D. M. Harris, Angew. Chem., Int. Ed., 36, 770–772 (1997).

    Article  Google Scholar 

  18. N. Mataga, H. Misuhara, N. Nakashima, Y. Sakata, and S. Misumi, J. Lumin., 12/13, 159–168 (1976).

  19. T. Okada, M. Migita, N. Mataga, Y. Sakata, and S. Misumi, J. Am. Chem. Soc., 103, 4715–4720 (1981).

    Article  Google Scholar 

  20. Y. Mo, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 1, 164–171 (2011).

    Google Scholar 

  21. K. Pettersson, J. Wiberg, T. Ljungdahl, J. Martensson, and B. Albinsson, J. Phys. Chem. A, 110, 319–326 (2006).

    Article  Google Scholar 

  22. T. Hines, I. Diez-Perez, J. Hihath, H. Liu, Z. Wang, J. Zhao, G. Zhou, K. Mullen, and N. Tao, J. Am. Chem. Soc., 132, 11658–11664 (2010).

    Article  Google Scholar 

  23. H. Sugiyama and I. Saito, J. Am. Chem. Soc., 118, 7063–7068 (1996).

    Article  Google Scholar 

  24. F. Prat, K. N. Houk, and C. S. Foote, J. Am. Chem. Soc., 120, 845–846 (1998).

    Article  Google Scholar 

  25. F. D. Lewis, X. Liu, J. Liu, R. T. Hayes, and M. R. Wasielewski, J. Am. Chem. Soc., 122, 12037–12038 (2000).

    Article  Google Scholar 

  26. S. Yokojima, N. Yoshiki, W. Yonai, and A. Okada, J. Phys. Chem. B, 113, 16384–16392 (2009).

    Article  Google Scholar 

  27. G. Gill, D. M. Pawar, and E. A. Noe, J. Org. Chem., 70, 10726–10731 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Povedailo.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 84, No. 3, pp. 434–442, May–June, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Povedailo, V.A., Stupak, A.P., Tsybulsky, D.A. et al. Fluorescence Quenching of Carboxyfluoresceins Conjugated Convalently to Oligonucleotides. J Appl Spectrosc 84, 452–459 (2017). https://doi.org/10.1007/s10812-017-0491-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-017-0491-6

Keywords

Navigation