Skip to main content
Log in

Spectral Range Optimization to Enhance the Effectiveness of Phototherapy for Neonatal Hyperbilirubinemia

  • Published:
Journal of Applied Spectroscopy Aims and scope

The effectiveness of phototherapy for hyperbilirubinemia of newborns using narrowband LED sources was found to depend not only on the position of the LED emission spectrum peak within the absorption band of bilirubin but also on the width of the incident radiation spectrum. Extension of the spectral range of radiation by adding a green component with λmax ≈ 505 nm to the blue light band with λmax ≈ 462 nm (provided equal integrated power density) gives a more efficient decrease in the total bilirubin level in the blood of newborns. This effect was attributed to heterogeneity of the spectral characteristics of bilirubin in different microenvironments as well as dependence of the optimal wavelength for photoisomerization of the pigment on the depth of the blood vessels where the bilirubin phototransformation reactions occur. Moreover, extension of the spectral range of the incident radiation by adding a green component increases the irradiated volumes of blood where the photoisomerization reactions with a high lumirubin quantum yield underlying this phototherapy are initiated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. American Academy of Pediatrics. Subcommittee on Hyperbilirubinemia, Pediatrics, 114, No. 1, 297–316 (2004).

  2. J. F. Watchko, Res. Rep. Neonatol., 4, 183–193 (2014).

    Google Scholar 

  3. M. J. Maisels, J. F. Watchko, V. K. Bhutani, and D. K. Stevenson, J. Perinatol., 32, No. 9, 660–664 (2012).

    Article  Google Scholar 

  4. V. Yu. Plavskii, in: J. F. Novotny and F. Sedlacek (Eds.), Bilirubin: Chemistry, Regulation and Disorder, Nova Science Publishers, New York (2012), pp. 1–65.

    Google Scholar 

  5. T. Xiong, Y. Qu, S. Cambier, and D. Mu, Eur. J. Pediatr., 170, No. 10, 1247–1255 (2011).

    Article  Google Scholar 

  6. M. J. Maisels and A. F. McDonagh, N. Engl. J. Med., 358, No. 9, 920–928 (2008).

    Article  Google Scholar 

  7. V. K. Bhutani, Pediatrics, 128, No. 4, 1046–1052 (2011).

    Article  Google Scholar 

  8. V. Yu. Plavskii, Biomed. Eng., 47, No. 2, 91–95 (2013).

    Article  Google Scholar 

  9. V. Yu. Plavskii, A. I. Tret’yakova, and G. R. Mostovnikova, J. Opt. Technol., 81, No. 6, 341–348 (2014).

    Article  Google Scholar 

  10. D. A. Lightner and A. F. McDonagh, Acc. Chem. Res., 17, No. 12, 417–424 (1984).

    Article  Google Scholar 

  11. V. Yu. Plavskii, V. N. Knukshto, A. S. Stasheuski, A. I. Tret’yakova, A. V. Mikulich, L. G. Plavskaya, I. A. Leusenko, and B. M. Dzhagarov, Abstracts of the 37th Meeting of the American Society of Photobiology, San Diego, California, June 14–19, 2014 (2014), p. 82.

  12. K. L. Tan, J. Pediatr., 114, No. 1, 132–137 (1989).

    Article  MathSciNet  Google Scholar 

  13. C. Vecchi, G. P. Donzelli, and M. G. Migliorini, Pediatr. Res., 17, No. 6, 4461–463 (1983).

    Article  Google Scholar 

  14. C. Vecchi, G. P. Donzelli, G. Sbrana, and R. Pratesi, J. Pediatr., 108, No. 3, 452–456 (1986).

    Article  Google Scholar 

  15. H. Ayyash, E. Hadjigeorgiou, J. Sofatzis, A. Chatziioannou, D. Nicolopoulos, and E. Sideris, Pediatrics, 111, No. 6, 882–887 (1987).

    Article  Google Scholar 

  16. H. Ayyash, E. Hadjigeorgiou, J. Sofatzis, H. Dellagrammaticas, and E. Sideris, Arch. Dis. Child., 62, No. 8, 843–845 (1987).

    Article  Google Scholar 

  17. M. Amato and D. Inaebnit, Eur. J. Pediatr., 150, No. 4, 274–276 (1991).

    Article  Google Scholar 

  18. G. P. Donzelli, S. Pratesi, G. Rapisardi, G. Agati, F. Fusi, and R. Pratesi, Lancet, 346, No. 8968, 184–185 (1995).

    Article  Google Scholar 

  19. F. Ebbesen, G. Agati, and R. Pratesi, Arch. Dis. Child. Fetal. Neonatal. Ed., 88, No. 5, 430–431 (2003).

    Article  Google Scholar 

  20. F. Ebbesen, P. Madsen, S. Støvring, H. Hundborg, and G. Agati, Acta Paediatr., 96, No. 6, 837–841 (2007).

    Article  Google Scholar 

  21. A. F. McDonagh, G. Agati, F. Fusi, and R. Pratesi, Photochem. Photobiol., 50, No. 3, 305–319 (1989).

    Article  Google Scholar 

  22. S. Onishi, S. Itoh, and K. Isobe, Biochem. J., 236, No. 1, 23–29 (1986).

    Article  Google Scholar 

  23. V. Yu. Plavskii, V. A. Mostovnikov, G. R. Mostovnikova, and A. I. Tret’yakova, Zh. Prikl. Spektroskopii, 74, No. 1, 108–119 (2007) [J. Appl. Spectroscopy, 74, No. 1, 120–132 (2007)].

  24. V. Yu. Plavskii, V. A. Mostovnikov, A. I. Tret’yakova, and G. R. Mostovnikova, J. Opt. Technol., 74, No. 7, 446–454 (2007).

    Article  Google Scholar 

  25. A. A. Lamola, V. K. Bhutani, R. J. Wong, D. K. Stevenson, and A. F. McDonagh, Pediatr. Res., 74, No. 1, 54–60 (2013).

    Article  Google Scholar 

  26. A. A. Lamola and M. Russo, Photochem. Photobiol., 90, No. 2, 294–296 (2014).

    Article  Google Scholar 

  27. R. Pratesi, L. Ronchi, G. Cecchi, G. Sbrana, M. G. Migliorini, C. Vecchi, and G. Donzelli, Photochem. Photobiol, 40, No. 1, 77–83 (1984).

    Article  Google Scholar 

  28. S. A. Lysenko and M. M. Kugeiko, Zh. Prikl. Spektrosk., 81, No. 5, 761–769 (2014).

    Google Scholar 

  29. G. Agati, F. Fusi, G. P. Donzelli, and R. Pratesi, J. Photochem. Photobiol., B: Biol., 18, Nos. 2–3, 197–203 (1993).

    Article  Google Scholar 

  30. D. S. Seidman, J. Moise, Z. Ergaz, A. Laor, H. J. Vreman, D. K. Stevenson, and R. Gale, J. Perinatol., 23, No. 2, 123–127 (2003).

    Article  Google Scholar 

  31. F. Ebbesen, P. K. Vandborg, P. H. Madsen, T. Trydal, L. H. Jakobsen, and H. J. Vreman, Pediatr. Res., 79, No. 2, 308–312 (2016).

    Article  Google Scholar 

  32. T. Hegyi, M. Graff, V. Zapanta, I. M. Hiatt, and T. R. Sisson, Am. J. Dis. Child., 140, No. 10, 994–997 (1986).

    Article  Google Scholar 

  33. G. R. Mostovnikova, V. A. Mostovnikov, V. Yu. Plavskii, A. I. Tret’yakova, S. P. Andreev, and A. B. Ryabtsev, Opt. Zh., 67, No. 11, 60–63 (2000).

    Google Scholar 

  34. Y. Uchida, Y. Morimoto, J. Haku, T. Nakagawa, T. Nishikubo, and Y. Takahashi, J. Japan. Soc. Premature Newborn Med., 23, No. 2, 263–267 (2011).

    Google Scholar 

  35. Y. Uchida, Y. Morimoto, T. Uchiike, T. Kamamoto, T. Hayashi, I. Arai, T. Nishikubo, and Y. Takahashi, Early Hum. Dev., 91, No. 7, 381–385 (2015).

    Article  Google Scholar 

  36. S. Pratesi, S. Di Fabio, C. Bresci, C. Di Natale, S. Bar, and C. Dani, Am. J. Perinatol., 32, No. 8, 779–784 (2015).

    Article  Google Scholar 

  37. G. Hart and R. Cameron, Arch. Dis. Child. Fetal Neonatal Ed., 90, No. 5, F437i–F440 (2005).

    Article  Google Scholar 

  38. H. J. Vreman, R. J. Wong, J. R. Murdock, and D. K. Stevenson, Acta Paediatrica, 97, No. 3, 308–316 (2008).

    Article  Google Scholar 

  39. S. D. P. Wentworth, Infant, 1, No. 1, 14–19 (2005).

  40. K. L. Tan, Pediatr. Res., 16, No. 8, 670–674 (1982).

    Article  Google Scholar 

  41. T. R. C. Sisson, N. Kendall, E. Shaw, and L. KechavarzOliai, J. Pediatr., 81, No. 1, 35–38 (1972).

    Article  Google Scholar 

  42. N. Modi and A. J. Keay, Arch. Dis. Child., 58, No. 6, 406–409 (1983).

    Article  Google Scholar 

  43. L. C. Mims, M. Estrada, D. S. Gooden, R. R. Caldwell, and R. V. Kotas, J. Pediatr., 83, No. 4, 658–662 (1972).

    Article  Google Scholar 

  44. P. K. Vandborg, B. M. Hansen, G. Greisen, and F. Ebbesen, Pediatrics, 130, No. 2, 352–357 (2012).

    Article  Google Scholar 

  45. Q. Peng, A. Juzeniene, J. Chen, L. O. Svaasand, T. Warloe, K.-E. Giercksky, and J. Moan, Rep. Prog. Phys., 71, No. 5, 056701–056728 (2008).

    Article  ADS  Google Scholar 

  46. A. N. Bashkatov, E. A. Genina, V. I. Kochubei (Kochubey), and V. V. Tuchin, J. Phys. D: Appl. Phys., 38, No. 15, 2543–2555 (2005).

  47. S. Onishi, S. Itoh, K. Isobe, M. Ochi, T. Kunikata, and T. Imai, Biochem. J., 257, No. 3, 711–714 (1989).

    Article  Google Scholar 

  48. A. A. Spector, J. Lipid Res., 16, No. 3, 165–179 (1975).

    Google Scholar 

  49. A. Robertson, S. Fink, and W. Karp, J. Pediatr., 112, No. 2, 291–294 (1988).

    Article  Google Scholar 

  50. P. Novotná and M. Urbanová, Biochim. Biophys. Acta, 1848, No. 6, 1331–1340 (2015).

    Article  Google Scholar 

  51. V. Malhotra, J. W. Greenberg, L. L. Dunn, and J. F. Ennever, Pediatr. Res., 21, No. 6, 530–533 (1987).

    Article  Google Scholar 

  52. N. Usharani, G. C. Jayakumar, J. R. Rao, B. Chandrasekaran, and B. U. Nair, J. Microsc., 253, No. 2, 109–118 (2014).

    Article  Google Scholar 

  53. F. Zsila, Biomacromolecules, 12, No. 1, 221–227 (2011).

    Article  Google Scholar 

  54. V. Yu. Plavskii, V. A. Mostovnikov, A. I. Tret’yakova, and G. R. Mostovnikova, J. Appl. Spectroscopy, 75, No. 3, 407–419 (2008).

    Article  ADS  Google Scholar 

  55. A. T. Costarino, J. F. Ennever, S. Baumgart, W. T. Speck, M. Paul, and R. A. Polin, Pediatrics, 75, No. 3, 519–522 (1985).

    Google Scholar 

  56. K. Mreihil, P. Madsen, B. Nakstad, J. Š. Benth, F. Ebbesen, and T. W. Hansen, Pediatr. Res., 78, No. 1, 56–62 (2015).

    Article  Google Scholar 

  57. R. Pratesi, G. Agati, and F. Fusi, Photochem. Photobiol., 40, No. 1, 41–47 (1984).

    Article  Google Scholar 

  58. P. Novotná, I. Goncharova, and M. Urbanová, Biochim. Biophys. Acta, 1838, 831–841 (2014).

    Article  Google Scholar 

  59. P. Novotná, F. Králik, and M. Urbanová, Biophys. Chem., 205, 41–50 (2015).

    Article  Google Scholar 

  60. O. A. Kozlenkova, L. G. Plavskaya, A. V. Mikulich, I. A. Leusenko, A. I. Tret′yakova, and V. Yu. Plavskii, Izv. Nats. Akad. Nauk Belarusi, Ser. Fiz. Mat. Nauk, No. 1, 117–123 (2016).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Plavskii.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 84, No. 1, pp. 106–119, January–February, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plavskii, V.Y., Mikulich, A.V., Leusenko, I.A. et al. Spectral Range Optimization to Enhance the Effectiveness of Phototherapy for Neonatal Hyperbilirubinemia. J Appl Spectrosc 84, 92–102 (2017). https://doi.org/10.1007/s10812-017-0433-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-017-0433-3

Keywords

Navigation