Skip to main content
Log in

Fast Discrimination of Bamboo Species Using VIS/NIR Spectroscopy

  • Published:
Journal of Applied Spectroscopy Aims and scope

The potential of visible/near-infrared (Vis/NIR) spectroscopy to discriminate different bamboo species was investigated. Vis/NIR spectra were collected on three bamboo species, Bashania fargesii, Fargesia qinlingensis, and Phyllostachys glauca, in the wavelength range of 350–2500 nm. The range of 425–2400 nm was chosen for the spectra modeling. Multiplicative signal correction, standard normal variate with detrending, and 1st and 2nd derivatives were used to preprocess the raw spectral data, and the results were compared. Soft independent modeling of class analogy (SIMCA) and partial least squares discriminant analysis (PLS-DA) methods were applied for building discriminant models. The recognition ratio of 30 samples in the validation set was 100% by both SIMCA and PLSDA models. These results indicate that Vis/NIR spectroscopy may provide a fast and nondestructive technique to discriminate different bamboo species in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. S. Dierenfeld, H. F. Hintz, J. B. Robertson, and O. T. Oftedal, J. Nutrition, 112, 636–641 (1982).

    Google Scholar 

  2. P. Christiansen, J. Morphol., 269, 896–908 (2008).

    Article  Google Scholar 

  3. C. L. Williams, S. Willard, A. Kouba, D. Sparks, W. Holmes, J. Falcone, C. H. Williams, and A. Brown, J. Anim. Physiol. Anim. Nutr., 97, 577–585 (2013).

    Article  Google Scholar 

  4. X. H. Liu, G. Albertus, K. Andrew, X. M. Shao, G. D. Dang, and T. J. Wang, J. Wildlife Manag., 69, No. 4, 1623–1632 (2005).

    Article  Google Scholar 

  5. T. T. Feng, T. Frank, N. X. Zhao, M. Li, F. W. Wei, J. Wildlife Manag., 73, No. 6, 852–858 (2008).

    Article  Google Scholar 

  6. H. Wang, S. G. Li, and W. S. Pan, Acta Sci. Nat. Univ. Pekinensis, 38, No. 6, 756–761 (2002).

    MathSciNet  Google Scholar 

  7. D. H. Janzen, Annu. Rev. Syst. Ecol., 7, 347–391 (1976).

    Article  Google Scholar 

  8. T. L. Stubbs, A. C. Kennedy, A. M. Fortuna, J. Agric. Food Chem., 58, 398–403 (2010).

    Article  Google Scholar 

  9. D. Ishikawa, K. Murayama, K. Awa, T. Genkawa, M. Komiyama, S. G. Kazarian, and Y. Ozaki, Anal. Bioanal. Chem., 405, 9401–9409 (2013).

    Article  Google Scholar 

  10. D. Eisenstecken, A. Panarese, P. Robatscher, C. W. Huck, A. Zanella, and M. Oberhuber, Molecules, 20, No. 8, 13603–13619 (2015).

    Article  Google Scholar 

  11. B. Glencross, N. Bourne, W. Hawkins, and M. Karopoulos, Aquacult. Nutr., 21, No. 1, 54–62 (2015).

    Article  Google Scholar 

  12. D. A. Burns and E. W. Ciurczak, Handbook of Near-infrared Analysis, Springer, New York, 20–39 (2001).

  13. J. F. Oliveira, M. Brossard, P. R. Vendrame, S. Mayi, E. J. Corazza, and R. L. Marchao, Compt. Rend. Geosci., 345, 446–453 (2013).

    Article  ADS  Google Scholar 

  14. D. Y. Lee, S. H. Kim, Y. C. Kim, H. J. Kim, and S. H. Sung, Microchem. J., 99, 213–217 (2011).

    Article  Google Scholar 

  15. F. Liu, H. J. Ye, Y. He, and L. Wang, J. Food Eng., 93, 127–133 (2009).

    Article  Google Scholar 

  16. Y. He, X. Li, and Y. N. Shao, Int. J. Food Properties, 10, 9–18 (2007).

    Article  Google Scholar 

  17. E. E. Wiedower, A. J. Kouba, C. K. Vance, R. L. Hansen, J. W. Stuth, and D. R. Tollesonet, PLoS ONE, 7, N 6, e38908 (2012); doi:10.1371/journal.pone.0038908.

    Article  ADS  Google Scholar 

  18. H. Martens, Multivariate Analysis of Quality: An Introduction, John Wiley & Sons Ltd., Chichester, New York (2001).

    Google Scholar 

  19. P. Lin, Y. M. Chen, Y. He, G. W. Hu, X. L. Fu, and C. L. Gu, Food Bioprocess Technol., 7, 3359–3369 (2014).

    Article  Google Scholar 

  20. P. Williams, Near-infrared Technology – Getting the Best Out of Light: A Short Course in the Practical Implementation of Near-infrared spectroscopy for the User, PDK Projects, Inc., Nanaimo, British Columbia, Canada (2005).

  21. E. E. Wiedower, Use of Near Infrared Reflectance Spectroscopy (NIRS) to Investigate Selection and Nutrient Utilization of Bamboo and to Monitor the Physiological Status of Giant Pandas (Ailuropodamelanoleuca), Master’s Thesis, Texas A&M University (2008).

  22. J. S. Alexander, H. S. Walter, and E. M. Lowell, Agron. J., 96, Nos. 1–2, 316–318 (2004).

    Google Scholar 

  23. O. Galtier, O. Abbas, Y. L. Dréau, C. Rebufa, J. Kister, J. Artaud, and N. Dupuy, Vibr. Spectrosc., 55, 132–140 (2011).

    Article  Google Scholar 

  24. D. Ballabio and V. Consonni, Anal. Methods, 5, 3790–3798 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Y. Dong.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 83, No. 5, pp. 788–793, September–October, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y.Z., Dong, W.Y. & Kouba, A.J. Fast Discrimination of Bamboo Species Using VIS/NIR Spectroscopy. J Appl Spectrosc 83, 826–831 (2016). https://doi.org/10.1007/s10812-016-0370-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-016-0370-6

Keywords

Navigation