Skip to main content
Log in

Effect of Model Type on the Accuracy of Polarization and Nephelometric Measurements of Red-Blood-Cell Volume

  • Published:
Journal of Applied Spectroscopy Aims and scope

The effect of using different mathematical models of a red blood cell on the accuracy of the measured average volume for a population of red blood cells was evaluated. The accuracy was estimated based on regression equations between the retrieved microphysical and measured optical properties. Models of a sphere, oblate spheroid, and biconcave discoid represented as a disc with rounded edges and concavities in the middle were analyzed. It was shown that the error of the regression equations when determining the average red-blood-cell volume using the biconcave discoid model was 1%; spheroid, ~8%; and sphere, ~21%. The error of the average volume due to the model is a few percent for the spheroid and ~20% for the sphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Lysenko, Methods for Optical Diagnosis of Biological Objects [in Russian], BGU, Minsk (2014).

  2. M. M. Kugeiko and D. A. Smunev, Opt. Spektrosk., 117, No. 4, 170–176 (2014).

    Article  Google Scholar 

  3. M. M. Kugeiko and S. A. Lysenko, Opt. Spektrosk., 104, No. 4, 654–659 (2008).

    Article  Google Scholar 

  4. M. M. Kugeiko and D. A. Smunev, Opt. Spektrosk., 113, No. 4, 490–495 (2012).

    Article  Google Scholar 

  5. N. N. Kizilova, T. V. Tishko, and D. V. Tishko, in: Third Eurasian Congress on Medical Physics and Engineering ″Medical Physics–2010″ [in Russian], June 21–25, 2010, Moscow (2010), pp. 260–262.

  6. M. A. Yurkin, ″Modeling Light Scattering by Blood Cells Using Discrete Dipole Methods″ [in Russian], Candidate Dissertation in Physical-Mathematical Sciences, Novosibirsk (2008).

  7. D. H. Tycko, Appl. Opt., 24, No. 9, 1355–1365 (1985).

    Article  ADS  Google Scholar 

  8. A. M. K. Nilsson, P. Alsholm, A. Karlsson, and S. Andersson-Engels, Appl. Opt., 37, No. 13, 2735–2748 (1998).

    Article  ADS  Google Scholar 

  9. E. Eremina, Y. Eremin, and T. Wriedt, Opt. Commun., 244, Nos. 1–6, 15–23 (2005).

  10. P. Mazeron and S. Muller, J. Opt., 29, No. 2, 68–77 (1998).

    Article  ADS  Google Scholar 

  11. P. A. Tarasov, A. G. Hoekstra, V. P. Maltsev, and G. Videen, Optics of Biological Particles, Springer, Dordrecht (2007), pp. 243–259.

  12. T. C. Grenfell and S. G. Warren, J. Geophys. Res.: Atmos., 104, No. D24, 31697–31709 (1999).

    Article  ADS  Google Scholar 

  13. G. Picard, L. Arnaud, F. Domine, and M. Fily, Cold Reg. Sci. Technol., 56, 10–17 (2009).

    Article  Google Scholar 

  14. A. A. Kokhanovsky and E. P. Zege, Appl. Opt., 7, No. 43, 1589–1602 (2004).

    Article  ADS  Google Scholar 

  15. V. N. Lopatin, A. V. Priezzhev, A. D. Apanasenko, and N. V. Shepelevich, Light-Scattering Methods for Analyzing Dispersed Biological Media [in Russian], Fizmatlit, Moscow (2004).

  16. M. M. Kugeiko and D. A. Smunev, Zh. Prikl. Spektrosk., 82, No. 6, 869–875 (2015) [M. M. Kugeiko and D. A. Smunev, J. Appl. Spectrosc., 82, 985–992 (2015)].

  17. I. A. Kassirskii and G. A. Alekseev, Clinical Hematology [in Russian], Meditsina, Moscow (1970).

  18. A. Gitter and L. Heilmeyer, Taschenbuch klinischer Funktionsprufungen, G. Fischer, Jena (1958) [Russian translation, Meditsina, Moscow (1966)].

  19. Z. D. Fedorova and K. M. Abdulkadyrov, Gematol. Transfuziol., 2, 12–17 (1989).

    Google Scholar 

  20. D. A. Smunev, P. C. Chaumet, and M. A. Yurkin, J. Quant. Spectrosc. Radiat. Transfer, 156, 67–79 (2015).

    Article  ADS  Google Scholar 

  21. E. K. Naumenko, Izv. Atmos. Oceanic Phys., 7, No. 8, 605–608 (1971).

    Google Scholar 

  22. J. E. Hansen and L. D. Travis, Space Sci. Rev., No. 16, 527–610 (1974).

  23. V. N. Lopatin and F. Ya. Sid′ko, Introduction to Optics of Cell Suspensions [in Russian], Nauka, Novosibirsk (1988).

  24. L. E. Paramonov, Opt. Spektrosk., 77, 660–663 (1994).

    Google Scholar 

  25. B. T. Draine and P. J. Flatau, J. Opt. Soc. Am. A, 11, No. 4, 1491–1499 (1994).

    Article  ADS  Google Scholar 

  26. F. M. Kahnert, J. Quant. Spectrosc. Radiat. Transfer, 79, 775–824 (2003).

    Article  ADS  Google Scholar 

  27. M. A. Yurkin and A. G. Hoekstra, J. Quant. Spectrosc. Radiat. Transfer, 112, No. 13, 2234–2247 (2011).

    Article  ADS  Google Scholar 

  28. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, New York (1983) [Russian translation, Mir, Moscow (1986)].

  29. G. M. Krekov and R. F. Rakhimov, Optico-Local Model of Continental Aerosol [in Russian], Nauka, Novosibirsk (1982).

  30. M. M. Kugeiko and D. A. Smunev, ″Method for Determining Refractive Index of Red Blood Cells in Human Blood,″ Rep. Belarus Pat. No. 19, 144, Minsk (2015).

  31. P. A. Tarasov, ″Determination of Characteristic Red-Blood-Cell Parameters by Dynamic Flow-Cytometry Methods″ [in Russian], Candidate Dissertation in Physical-Mathematical Sciences, Novosibirsk (2005).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Kugeiko.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 83, No. 2, pp. 222–229, March–April, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kugeiko, M.M., Smunev, D.A. Effect of Model Type on the Accuracy of Polarization and Nephelometric Measurements of Red-Blood-Cell Volume. J Appl Spectrosc 83, 204–211 (2016). https://doi.org/10.1007/s10812-016-0270-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-016-0270-9

Keywords

Navigation