Skip to main content
Log in

Study of Ellagic Acid as a Natural Elastase Inhibitor by Spectroscopic Methods

  • Published:
Journal of Applied Spectroscopy Aims and scope

A new natural inhibitor, ellagic acid (EA), was developed, and its inhibition efficiency on elastase was studied by spectroscopic methods. The experimental results proved that EA is a potent elastase inhibitor with an IC50 value of 1.44 mg/mL by UV-vis spectroscopy, and the inhibition mechanism of elastase was confirmed by fluorescence quenching. The interacting between EA and elastase was mainly based on the static quenching owing to the complex formation when the concentration of EA was ≤40 μM. Fluorescence quenching mainly occurred via dynamic quenching with increasing EA concentration. The thermodynamic parameters such as ΔH and ΔS were calculated to be –86.35 kJ/mol and –165.88 J/mol · K, respectively, indicating that the interactions between EA and elastase were mainly due to van der Waals forces or hydrogen bonding. The synchronous fl uorescence spectra showed that binding of EA to elastase can induce conformational changes in elastase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Meyer, K. Neurand, and B. Radke, Arch. Dermatol. Res., 270, 391–401 (1981).

    Article  Google Scholar 

  2. W. F. Daamen, J. H. Veerkamp, J. C. M. Van Hest, and T. H. V. Kuppevelt, Biomaterials, 28, 4378–4398 (2007).

    Article  Google Scholar 

  3. K. Ju Hee and A. K. R. Bandi. J. Med. Plants Res., 3, 914–920 (2009).

    Google Scholar 

  4. K. Morihara, Arch. Biochem. Biophys., 120, 68–78(1967).

    Article  Google Scholar 

  5. J. Balo and I. Banga, Biochem. J., 46, 384–387(1950).

    Article  Google Scholar 

  6. Y. C. Tsai, R. Y. Juang, S. F. Lin; S. W. Chen, M. Yamasaki, and G.Tamura, Appl. Environ. Microbiol., 54, 3156–3161 (1988).

    Google Scholar 

  7. T. D. Tetley, Thorax, 48, 560–565 (1993).

    Article  Google Scholar 

  8. S. Umeki, Y. Niki, and R. Soejima, Am. J. Med. Sci., 296, 103–106 (1988).

    Article  Google Scholar 

  9. K. C. Meyer, J. R. Lewandoski, J. J. Zimmerman, D. Nunley, W. J. Calhoun, and G. A. Dopico, Am. Rev. Respir. Dis., 144, 580–585(1991).

    Article  Google Scholar 

  10. Y. H. Kim, K. S. Kim; C. S. Han, H. C. Yang, S. H. Park, K. I. Ko, S. H. Lee, K. H. Kim, N. H. Lee, J. M. Kim, and K. H. Son, Int. J. Cosmetic Sci., 29, 487–488 (2007).

    Article  Google Scholar 

  11. P. A. Henriksen, M. Hitt, Z. Xing, J. Wang, C. Haslett, R. A. Riemersma, D. J. Webb, Y. V. Kotelevtsev, and J. M. Sallenave, J. Immunol., 172, 4535–4544 (2004).

    Article  Google Scholar 

  12. G. M.Tremblay, E. Vachon, C. Larouche, and Y. Bourbonnais, Chest., 121, 582–588 (2002).

    Article  Google Scholar 

  13. M. Zhang, Z. Zou, N. Maass, and R. Sager, Cancer Res., 55, 2537–2541 (1995).

    Google Scholar 

  14. M. L. Zani, S. M. Nobar, S. A. Lacour, S. Lemoine, C. Boudier, J. G. Bieth, and T. Moreau, Eur. J. Biochem., 271, 2370–2378 (2004).

    Article  Google Scholar 

  15. N. Sultana and N. H. Lee. Phytother. Res., 21, 1171–1176 (2007).

    Article  Google Scholar 

  16. H. K. Ju and A. K. R. Bandi, J. Med. Plants Res., 3, 914–920 (2009).

    Google Scholar 

  17. S. C. Barros, J. A. Martins, J. C. Marcos, and P. A. Cavaco, Enzyme Microb. Technol., 50, 107–114 (2012).

    Article  Google Scholar 

  18. T. Hatano, Nat. Med., 49, 357–363 (1995).

    Google Scholar 

  19. T. Okuda, Yakugaku Zasshi, 115, 81–100 (1995).

    Google Scholar 

  20. Y. Y. Soong and P. J. Barlow. Food Chem., 97, 524–530 (2006).

    Article  Google Scholar 

  21. N. Rangkadilok, S. Sitthimonchai, L. Worasuttayangkurn, C. Mahidol, M. Ruchirawat, and J. Satayavivad, Food Chem. Toxicol., 45, 328–336 (2007).

    Article  Google Scholar 

  22. M. Yoshimura, Y. Watanabe, K. Kasai, J. Yamakoshi, and T. Koga. Biosci. Biotechnol. Biochem., 69, 2368–2373 (2005).

    Article  Google Scholar 

  23. P. Zafrilla, F. Ferreres, and F. A. Tomás-Barberán, J. Agric. Food Chem., 49, 3651–3655 (2001).

    Article  Google Scholar 

  24. H. Shimogaki, Y. Tanaka, H. Tamai, and M. Masuda, Int. J. Cosmetic Sci., 22, 291–304 (2000).

    Article  Google Scholar 

  25. D. David and C. M. Thomas, J. Gen. Microbiol., 134, 43–52 (1988).

    Article  Google Scholar 

  26. Y. Yumin, H. Qiuluan, F. Yanli, and S. Hongshuai, Spectrochim . Acta, A, 69, 432–436 (2008).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Xing.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 83, No. 1, p. 164, January–February, 2015

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, X., Yang, X. & Cao, Y. Study of Ellagic Acid as a Natural Elastase Inhibitor by Spectroscopic Methods. J Appl Spectrosc 83, 149–155 (2016). https://doi.org/10.1007/s10812-016-0259-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-016-0259-4

Keywords

Navigation