Skip to main content

Advertisement

Log in

Comparison of Blue Wavelengths and Scan Velocity Effects on the Detection of Enamel Surface Caries Using Steady-State Laser-Induced Autofluorescence Spectroscopy

  • Published:
Journal of Applied Spectroscopy Aims and scope

The results of sound and carious enamel fl uorescence emission study using (i) different blue wavelengths, (ii) different scan velocity, and (iii) spectral ratio are reported. The samples were irradiated using a tunable argon laser emitting at 459 and 488 nm and a 405 nm laser at two different scan velocities of 0.23 and 0.5 mm/s. The results showed a spectral band of 443–492 nm for 405 nm, 493–522 nm for 459 nm, and 526–625 nm for 488 nm lasers for sound teeth. It was found from the emission spectra that with increase in the excitation wavelength, the corresponding primary peaks of the carious samples showed Stokes shifts of 4, 6, and 2 nm, respectively. No signifi cant change was observed for the secondary peaks. Also, in all cases, the intensity of fl uorescence signals of sound teeth was higher than those of carious teeth. The highest shape factor of 1.82 and integrated intensity ratio of 1.20 were achieved at 405 nm, which provides relatively better tissue discrimination. Also, increasing the scan velocity reduced the signal amplitudes in both sound and carious samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Hosoya, T. Taguchi, and F. Tay, J. Dent., 35, 137–143 (2007).

    Article  Google Scholar 

  2. C. Ketley and R. Holt, Br. Dent. J., 174, 364–370 (1993).

    Article  Google Scholar 

  3. M. E. Khosroshahi and A. Ghasemi, Laser Med. Sci., 18, 196–203 (2004).

    Article  Google Scholar 

  4. R. Thareja, A. Sharma, and S. Shukla, Med. Eng. Phys., 30, 1143–1148 (2008).

    Article  Google Scholar 

  5. M. Neimz, Proc. SPIE, 2323, 170–179 (1994).

    Article  ADS  Google Scholar 

  6. A. Ko, M. Hewko, and M. Sowa, Opt. Express, 16, 6274–6279 (2008).

    Article  ADS  Google Scholar 

  7. A. Schneiderman, M. Elbaun, and T. Shultz, Caries Res., 31, 103–107 (1997).

    Article  Google Scholar 

  8. D. Popesca, M. Sowa, and M. Hewko, J. Biomed. Opt., 13, 054053 (2008).

    Article  ADS  Google Scholar 

  9. Y. Kimura, P. Wilder, and T. Krasiova, A. Anna Maria, Proc. SPIE, 2672, 64–72 (1996).

    Article  ADS  Google Scholar 

  10. C. Rousseau, S.Poland, and J. Girkin, Caries Res., 41, 245–251 (2007).

    Article  Google Scholar 

  11. A. Hall,E. Deschepper, and M. Ando, Adv. Dent. Res., 11, 507–514 (1997).

    Article  Google Scholar 

  12. B. T. Amaechi and S. Higham, Proc. SPIE, 4432, 110–117 (2001).

    Article  ADS  Google Scholar 

  13. R. Jeon, A. Hellen, A. Matveinko, A. Mandelis, and A. Abram, Caries Res., 41, 323–332 (2007).

    Google Scholar 

  14. A. Hellen, A. Mandelis ,Y. Finer, and B. T. Amaechi, J. Biomed. Opt., 16, 1–13(2011).

    Google Scholar 

  15. M. Gadalla and M. El Sharkawi, J. Med. Biol. Eng., 30, 113–118 (2010).

    Google Scholar 

  16. C. L. Darling, J. Jiao, C. Lee, and H. Kang, Proc. SPIE, 7549, 75490 L (2010).

    Article  ADS  Google Scholar 

  17. R. Hibst, R. Papulus, and A. Lussi, Med. Laser Appl., 16, 205–213 (2001).

    Article  Google Scholar 

  18. A. Boltzan de Paula, and J. D. Campos, M. Dinizi, J. Hebling, Laser Med. Sci., 26, 1–5 (2011).

    Article  Google Scholar 

  19. E. Shhly, S. Brailsford, and E. Kidd, Caries Res., 35, 421–426 (2001).

    Article  Google Scholar 

  20. K. Konig and H. Schneckenburger, J. Fluores., 4, 17–40 (1994).

    Article  Google Scholar 

  21. S. Abrams, Restor. Dent., 12, 10–16 (2009).

    Google Scholar 

  22. A. Banerjee and A. Boyde, Caries Res., 32, 219–226 (1997).

    Article  Google Scholar 

  23. E. Borisova, T. Uzunov, and L. Avramov, Laser Surg. Med., 34, 249–253 (2004).

    Article  Google Scholar 

  24. E. Borisova, T. Uzunov, and L. Avramov, Laser Med. Sci., 21, 34–41 (2006).

    Article  Google Scholar 

  25. P. Gupta, S. K. Majumder, and A. Uppel, Laser Surg. Med., 21, 417–422 (1997).

    Article  Google Scholar 

  26. M. E. Khosroshahi and M. Rahmani, J. Fluores., 22, 281–288 (2012).

    Article  Google Scholar 

  27. R. Alfano and S. Yao, J. Dent. Res., 60,120–122 (1981).

    Google Scholar 

  28. Q. Fang, T. Papaioannou, A.Javier, and J. Vaitha, Rew. Sci. Instrum.,75, 151–162 (2004)

    Article  ADS  Google Scholar 

  29. M. Kazuba, G. Liszk, H. Trazeciak, and Z. Drazaga, Pol. J. Environ. Stud., 15, 151–153 (2006).

    Google Scholar 

  30. A. Riberio, C. Rousseau, J. Girkin, and A. Hall, J. Dent., 33, 73–78 (2005).

    Article  Google Scholar 

  31. Q. Chen, B. Lin, Z. Chen, and H. Zhu, Laser Phys., 7, 752–756 (2010).

    Article  ADS  Google Scholar 

  32. N. Subhash, Sh. Thmas, R. Maldia, and M. Jose, Laser Surg. Med., 37, 320–328 (2005).

    Article  Google Scholar 

  33. Z. Drzazga, G. Liszka, and A. Kluczewska, Proc. Photon. Tech., Wroclow, 295–298 (2006).

  34. F. Sundstrom, K. Fredriksson, and S. Montan, J. Swed. Dent., 9, 71–80 (1985).

    Google Scholar 

  35. S. Albein, C. Byvik, and A. Buoncristiani, Laser Surg., 907, 96–99 (1988).

    Google Scholar 

  36. A. Gomes, D. M. Zezzel, A. Ribeiro, and I. Bachmann, J. Biomed. Opt., 12, 064013 (2007).

    Article  Google Scholar 

  37. G. A. Zalesskaya and T. O. Maslova, J. Appl. Spectrosc., 77, 547–581 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Khosroshahi.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 81, No. 2, p. 328, March–April, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khosroshahi, M.E., Khoi, N.T. Comparison of Blue Wavelengths and Scan Velocity Effects on the Detection of Enamel Surface Caries Using Steady-State Laser-Induced Autofluorescence Spectroscopy. J Appl Spectrosc 81, 347–354 (2014). https://doi.org/10.1007/s10812-014-9935-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-014-9935-4

Keywords

Navigation