Skip to main content
Log in

Infestation by Colaconema daviesii (Rhodophyta, Colaconematales) of haploid and diploid thalli of edible red seaweed Chondracanthus chamissoi (Rhodophyta, Gigartinales): effects on growth and survival

  • Research
  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Colaconema daviesii, a filamentous red alga, has been previously reported as an endophyte infesting Chondracanthus chamissoi. This study focuses on identifying the symptoms of C. daviesii infesting on haploid and diploid thalli of C. chamissoi. Co-cultivation of C. daviesii with diploid and haploid thalli of C. chamissoi was conducted under two treatments. Treatment 1 was under a 12:12 h (L:D) photoperiod for 40 days. Treatment 2 was under a 12:12 h (L:D) photoperiod for 20 days, followed by a 16:08 h (L:D) photoperiod for an additional 20 days. Parameters such as the density and coverage of C. daviesii filaments on C. chamissoi thalli were measured, as well as the growth rate and survival of C. chamissoi. Infestation occurred in both treatments and phases, with an increase in the presence of C. daviesii as the photoperiod extended. This relationship negatively affected the host in all measured parameters, with the diploid phase being more adversely affected. Infestation begins with spores under a 12:12 h (L:D) photoperiod condition, and filament development is observed on C. chamissoi thalli as the photoperiod increases. Early infestation symptoms were not evident, complicating the recognition of C. daviesii on haploid and diploid thalli of C chamissoi. The potential risk of transferring C. chamissoi contained filaments of C. daviesii through cultivation is postulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that supports the results of the present research study are available when solicited to the corresponding author.

References

  • Araújo PG, Schmidt ÉC, Kreusch MG, Kano CH, Guimarães SMPB, Bouzon ZL, Fujii MT, Yokoya NS (2014) Ultrastructural, morphological, and molecular characterization of Colaconema infestans (Colaconematales, Rhodophyta) and its host Kappaphycus alvarezii (Gigartinales, Rhodophyta) cultivated in the Brazilian tropical region. J Appl Phycol 26:1953–1961

    Article  Google Scholar 

  • Arbaiza S, Avila-Peltroche J, Castañeda-Franco M, Mires-Reyes A, Advíncula O, Baltazar P (2023) Vegetative propagation of the commercial red seaweed Chondracanthus chamissoi in Peru by secondary attachment disc during indoor cultivation. Plants 12:1940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avila-Peltroche J, Padilla-Vallejos J (2020) The seaweed resources of Peru. Bot Mar 63:381–394

  • Avila-Peltroche J, Villena-Sarmiento G (2022) Analysis of Peruvian seaweed exports during the period 1995–2020 using trade data. Bot Mar 65:209–220

  • Basaure H, Macchiavello J, Sepúlveda C, Sáez F, Yañez D, Vega L, Marín C (2021) Sea bottom culture of Chondracanthus chamissoi (Rhodophyta: Gigartinales) by vegetative propagation at Puerto Aldea, Tongoy Bay (Northern Chile). Aquac Res 52:2025–2035

    Article  Google Scholar 

  • Behera DP, Ingle KN, Mathew DE, Dhimmar A, Sahastrabudhe H, Sahu SK, Krishnan MG, Shinde PB, Ganesan M, Mantri VA (2022) Epiphytism, diseases and grazing in seaweed aquaculture: A comprehensive review. Rev Aquac 14:1345–1370

    Article  Google Scholar 

  • Bouarab K, Potin P, Weinberger F, Correa J, Kloareg B (2001) The Chondrus crispus-Acrochaete operculata host-pathogen association, a novel model in glycobiology and applied phycopathology. J Appl Phycol 13:185–193

    Article  CAS  Google Scholar 

  • Bulboa CR, Macchiavello JE (2001) The effects of light and temperature on different phases of the life cycle in the carrageenan producing alga Chondracanthus chamissoi (Rhodophyta, Gigartinales). Bot Mar 44:371-374

  • Bulboa CR, Macchiavello JE (2006) Cultivation of cystocarpic, tetrasporic and vegetative fronds of Chondracanthus chamissoi (Rhodophyta, Gigartinales) on ropes at two localities in northern Chile. Invest Mar 34:109–112.

  • Bulboa CR, Macchiavello JE, Oliveira EC, Fonck E (2005) First attempt to cultivate the carrageenan-producing seaweeds Chondracanthus chamissoi (C. Agardh) Kützing (Rhodophyta; Gigartinales) in Northern Chile. Aquac Res 36:1069–1074

    Article  Google Scholar 

  • Bulboa C, Macchiavello J, Oliveira E, Véliz K (2008) Growth rate differences between four Chilean populations of edible seaweed Chondracanthus chamissoi (Rhodophyta, Gigartinales). Aquac Res 39:1550–1555

    Article  Google Scholar 

  • Bulboa C, Macchiavello J, Véliz K, Oliveira EC (2010) Germination rate and sporeling development of Chondracanthus chamissoi (Rhodophyta, Gigartinales) varies along a latitudinal gradient on the coast of Chile. Aquat Bot 92:137–141

    Article  Google Scholar 

  • Bulboa C, Véliz K, Sáez F, Sepúlveda C, Vega L, Macchiavello J (2013) A new method for cultivation of the carragenophyte and edible red seaweed Chondracanthus chamissoi based on secondary attachment disc: Development in outdoor tanks. Aquaculture 410:86–94

    Article  Google Scholar 

  • Bulboa C, Massad I, Contreras-Porcia L, Zapata J, Castañeda F, Ramírez M, Gil-Kodaka P (2020) Concise review of genus Chondracanthus (Rhodophyta: Gigartinales). J Appl Phycol 32:773–785

    Article  Google Scholar 

  • Correa J (1990) Pigmented algal endophytes of Chondrus crispus Stackhouse: host-specificity, fine structure and effects on host performance in infections by Acrochaete operculata Correa & Nielsen and A. heteroclada Correa & Nielsen. PhD Dissertation, Dalhousie University, Canada.

  • Correa JA, McLachlan JL (1993) Endophytic algae of Chondrus crispus (Rhodophyta). V. Fine structure of the infection by Acrochaete operculata (Chlorophyta). Eur J Phycol 29:33–47

    Article  Google Scholar 

  • Correa JA, Nielsen R, Grund DW (1988) Endophytic algae of Chondrus crispus (Rhodophyta). II. Acrochaete heteroclada sp. nov., A. operculata sp. nov, and Pharophila dendroides (Chorophyta). J Phycol 24:528–539

    Google Scholar 

  • Etcheverry H (1986) Algas marinas bentónicas de Chile. UNESCO, Chile

    Google Scholar 

  • Friedlander M, Gonen Y, Kashman Y, Beer S (1996) Gracilaria conferta and its epiphytes: 3. Allelopathic inhibition of the red seaweed by Ulva cf. lactuca. J Appl Phycol 8:21–25

    Article  Google Scholar 

  •  García-Redondo V, Bárbara I, Díaz-Tapia P (2019) Biodiversity of epiphytic macroalgae (Chlorophyta, Ochrophyta, and Rhodophyta) on leaves of Zostera marina in the northwestern Iberian Peninsula. Anales Jard Bot Madrid 76:e078

    Google Scholar 

  • Gauna MC, Parodi E (2008) Green epiphyte in Hymenena falklandica (Rhodophyta) from the Patagonia coasts of Argentina: preliminary observations. Phycol Res 56:172–182

    Article  Google Scholar 

  • González J, Meneses I, Vásquez J (1997) Field studies in Chondracanthus chamissoi (C. Agardh) Kützing: seasonal and spatial variations in life-cycle phases. Biol Pesq 26:3–12

    Google Scholar 

  • Hansen GI, Hanyuda T, Kawai, H (2017) Benthic marine algae on Japanese tsunami marine debris: a morphological documentation of the species. Part 1. The tsunami event, the project overview, and the red algae. OSU Scholars Archive, Corvallis.

  • Hayashi L, Bulboa C, Kradolfer P, Soriano G, Robledo D (2014) Cultivation of red seaweeds: A Latin American perspective. J Appl Phycol 26:719–727

    Article  Google Scholar 

  • Ingle KN, Polikovsky M, Chemodanov A, Golberg A (2018) Marine integrated pest management (MIPM) approach for sustainable seagriculture. Algal Res 29:223–232

    Article  Google Scholar 

  • Katsaros C, Orfanidis S, Küpper FC (2022) What’s new in marine botany of the Eastern Mediterranean? Bot Mar 65:221–230.

  • Kim C, Kim YS, Choi HG, Nam KW (2014) New records of three endophytic green algae from Grateloupia spp. (Rhodophyta) in Korea. Algae 29:127–136

    Article  CAS  Google Scholar 

  • Lee M-C, Yeh H-Y (2021) Molecular and morphological characterization of Colaconema formosanum sp. nov. (Colaconemataceae, Rhodophyta): A new endophytic filamentous red algal species from Taiwan. J Mar Sci Eng 9:809.

  • Lein TE, Sjøtun K, Wakili S (1991) Mass-occurrence of a brown filamentous endophyte in the lamina of the kelp Laminaria hyperborea (Gunnerus) Foslie along the southwestern coast of Norway. Sarsia 76:187–193

    Article  Google Scholar 

  • Leonardi PI, Miravalles AB, Faugeron S, Flores V, Beltrán J, Correa JA (2006) Diversity, phenomenology, and epidemiology of epiphytism in farmed Gracilaria chilensis (Rhodophyta) in northern Chile. Eur J Phycol 41:247–257

    Article  Google Scholar 

  • López B (2017) Micropropagación y cultivo de la “Mota Lisa”, un morfotipo de Chondracanthus chamissoi (C. Agardth) Kützing (Rhodophyta; Gigartinales). Dissertation. Universidad Andrés Bello, Chile.

  • Macchiavello J, Sepúlveda C, Basaure H, Sáez F, Yañez D, Marín C, Vega L (2018) Suspended culture of Chondracanthus chamissoi (Rhodophyta: Gigartinales) in Caleta Hornos (northern Chile) via vegetative propagation with secondary attachment discs. J Appl Phycol 30:1149–1155

    Article  Google Scholar 

  • Méndez C, Bustamante DE, Calderon MS, Gauna C, Hayashi L, Robledo D, Tapia-Larios C, Campbell I, Westermeier R, Murúa P (2024) Biosecurity baseline for a sustainable development of seaweed aquaculture in Latin America. Mar Policy 159:105933

    Article  Google Scholar 

  • Montoya V (2019) Colaconema daviesii (Rhodophyta; Colaconematales) una endófita del alga comercial Chondracanthus chamissoi. Dissertation, Universidad Andrés Bello, Chile.

  • Montoya V, Meynard A, Contreras-Porcia L, Contador CB (2020) Molecular identification, growth, and reproduction of Colaconema daviesii (Rhodophyta; Colaconematales) endophyte of the edible red seaweed Chondracanthus chamissoi. J Appl Phycol 32:3533–3542

    Article  CAS  Google Scholar 

  • Murúa P, Garvetto A, Egan S, Gachon CMM (2023) The reemergence of phycopathology: When algal biology meets ecology and biosecurity. Annu Rev Phytopathol 61:231–255

    Article  PubMed  Google Scholar 

  • Ogandaga CAM, Choil HG, Jang JK, Nam KW (2016) Growth responses of Chondrus ocellatus Holmes (Gigartinales, Rhodophyta) two endophyte, Mikrosyphar zostera Kuckuck (Ectocarpales, Ochrophyta), and Ulvella ramosa (N. L Gardner) R. Nielsen (Ulvales, Chlorophyta) in culture. Algae 31:363–371

    Article  CAS  Google Scholar 

  • Oyarzo S, Ávila M, Alvear P, Remonsellez JP, Contreras-Porcia L, Bulboa C (2021) Secondary attachment disc of edible seaweed Chondracanthus chamissoi (Rhodophyta, Gigartinales): Establishment of permanent thalli stock. Aquaculture 530:735954

    Article  Google Scholar 

  • Poza AM, Gauna MC, Escobar JF, Parodi ER (2018) Temporal dynamics of algal epiphytes on Leathesia marina and Colpomenia sinuosa macrothalli (Phaeophyceae). Mar Biol Res 4:65–75

    Article  Google Scholar 

  • Ramírez C, Bulboa C, Contreras L, Mora AM (2018) Flora Marina Bentónica de Quintay. Ril Editores, Chile

    Google Scholar 

  • RStudio Team (2020) Integrated development for R. RStudio, PBC, Boston. http://www.rstudio.com/

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nature Meth 9:671–675

    Article  CAS  Google Scholar 

  • Thornber CS (2006) Functional properties of the isomorphic biphasic algal life cycle. Integr Comp Biol 46:605–614

    Article  PubMed  Google Scholar 

  • Usandizaga S, Beltrán J, Faugeron S, Camus C (2023) Contrasting response of Gracilaria chilensis (Gracilariales, Rhodophyta) life cycle stages to epiphyte infection. J Appl Phycol 35:1831–1845

    Article  CAS  Google Scholar 

  • Vásquez JA, Vega JMA (2001) Chondracanthus chamissoi (Rhodophyta, Gigartinales) in northern Chile: ecological aspects for management of wild populations. J Appl Phycol 13:267–277

    Article  Google Scholar 

  • Vieira VMNCS, Engelen AH, Huanel OR, Guillemin M-L (2021) Differential frond growth in the isomorphic haploid–diploid red seaweed Agarophyton chilense by long-term in situ monitoring. J Appl Phycol 57:592–605

    Article  CAS  Google Scholar 

  • Ward GM, Faisan JP Jr, Cottier-Cook EJ, Gachon C, Hurtado AQ, Lim PE, Matoju I, Msuya FE, Bass D, Brodie J (2020) A review of reported seaweed diseases and pests in aquaculture in Asia. J World Aquac Soc 51:815–828

    Article  Google Scholar 

  • Weinberger F, Hoppe H-G, Friedlander M (1997) Bacterial induction and inhibition of a fast necrotic response in Gracilaria conferta (Rhodophyta). J Appl Phycol 9:277–285

    Article  CAS  Google Scholar 

  • Weinberger F, Pohnert G, Kloareg B, Potin P (2002) A signal released by an endophytic attacker acts as a substrate for a rapid defensive reaction of the red alga Chondrus crispus. ChemBioChem 29:69–76

    Google Scholar 

  • Wynne M, Schneider C (2008) Colaconema basiramosum sp. nov. (Colaconemataceae, Rhodophyta) from the Sultanate of Oman, northern Arabian Sea. Cryptogam Algol 29:69–76

    Google Scholar 

  • Yang MY, Macaya EC, Kim MS (2015) Molecular evidence for verifying the distribution of Chondracanthus chamissoi and C. teedei (Gigartinaceae, Rhodophyta). Bot Mar 58:103–113.

  • Yong YS, Yong WTL, Anton A (2013) Analysis of formulae for determination of seaweed growth rate. J Appl Phycol 25:1831–1834

    Article  Google Scholar 

Download references

Acknowledgments

We extend our gratitude to LEPAM (Laboratory of Studies and Production of Marine Algae), where the present work was conducted. We also acknowledge CIDTA (Center for Research and Technological Development in Algae and Other Biological Resources) for their assistance in the collection of C. chamissoi. Finally, we appreciate the support from CIMARQ (Center for Marine Research), where the cultivation of both C. chamissoi and C. daviesii was carried out. We also thank two anonymous reviewers for their comments.

Funding

The authors did not receive support from any organization for the submitted work

Author information

Authors and Affiliations

Authors

Contributions

Valentina Montoya: conceptualization, investigation, visualization, Software, writing – original draft, Methodology. Paula Alvear: conceptualization, investigation, methodology. Cristian Bulboa: Conceptualization, Supervision, writing – review & editing.

Corresponding author

Correspondence to Cristian Bulboa.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montoya, V., Alvear, P. & Bulboa, C. Infestation by Colaconema daviesii (Rhodophyta, Colaconematales) of haploid and diploid thalli of edible red seaweed Chondracanthus chamissoi (Rhodophyta, Gigartinales): effects on growth and survival. J Appl Phycol (2024). https://doi.org/10.1007/s10811-024-03215-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10811-024-03215-z

Keywords

Navigation