Skip to main content
Log in

Enhanced extracellular polymeric substances production defending microalgal cells against the stress of tetrabromobisphenol A

  • Research
  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Microalgal cells are the major contributors of extracellular polymeric substances (EPS) in the marine environment, which could be influenced by exogenous pollutants exposure. As the most dominant brominated flame retardant worldwide, studies on the influence of tetrabromobisphenol A (TBBPA) on microalgal cells and EPS production are rare. Therefore, we systemically investigated the physiological-biochemical responses of the marine diatom Thalassiosira pseudonana to TBBPA exposure and the roles of EPS. Our results indicated that the half effective concentrations (EC50) of TBBPA on T. pseudonana were 1.67–3.22 mg L−1 from 24 to 96 h; Photosynthetic damage, cellular materials increase, cellular oxidative stress and cell death were found under the toxicity of TBBPA, in which cellular materials increase and oxidative stress were positively correlated with the increase of EPS contents. The increase of soluble and bound EPS contents, protein/carbohydrate ratios together with the EPS addition assays indicated the protective effects of EPS to alleviate the toxicity of TBBPA. Increased microalgal EPS secretions and protein/carbohydrate ratios also happened under the environmental TBBPA concentration (2 μg L−1), which might accelerate the organic matters aggregation process especially in coastal areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Chaplin M, Kennedy J (1994) Carbohydrate Analysis: A Practical Approach, 2nd edn. IRL, Oxford

    Book  Google Scholar 

  • Cheng Q, Liu Y, Xu L, Ye J, Wang Q, Lin H, Ma J (2023) Regulation and role of extracellular polymeric substances in the defensive responses of Dictyosphaerium sp. to enrofloxacin stress. Sci Total Environ 896:165302

  • Chu H, Yu H, Tan X, Zhang Y, Zhou X, Yang L, Li D (2015) Extraction procedure optimization and the characteristics of dissolved extracellular organic matter (dEOM) and bound extracellular organic matter (bEOM) from Chlorella pyrenoidosa. Colloids Surf B 125:238–246

    Article  CAS  Google Scholar 

  • Cooksey K, Guckert J, Williams S, Callis P (1987) Fluorometric determination of the neutral lipid content of microalgal cells using Nile red. J Microbiol Meth 6:333–345

    Article  CAS  Google Scholar 

  • Daly KL, Passow U, Chanton J, Hollander D (2016) Assessing the impacts of oil-associated marine snow formation and sedimentation during and after the Deepwater Horizon oil spill. Anthropocene 13:18–33

    Article  Google Scholar 

  • Deng D, Tam N (2016) Adsorption-uptake-metabolism kinetic model on the removal of BDE-47 by a Chlorella isolate. Environ Pollut 212:290–298

    Article  CAS  PubMed  Google Scholar 

  • Fan J, Cui Y, Wan M, Wang W, Li Y (2014) Lipid accumulation and biosynthesis genes response of the oleaginous Chlorella pyrenoidosa under three nutrition stressors. Biotechnol Biofuels 7:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Fein JB, Yu Q, Nam J, Yee N (2019) Bacterial cell envelope and extracellular sulfhydryl binding sites: their roles in metal binding and bioavailability. Chem Geol 521:28–38

    Article  CAS  Google Scholar 

  • García N, López-Elías J, Miranda A, Martínez-Porchas M, Huerta N, García A (2012) Effect of salinity on growth and chemical composition of the diatom Thalassiosira weissflogii at three culture phases. Lat Am J Aquat Res 40:435–440

    Article  Google Scholar 

  • Gong W, Zhu L, Jiang T, Han C (2017) The occurrence and spatial-temporal distribution of tetrabromobisphenol A in the coastal intertidal zone of Qingdao in China, with a focus on toxicity assessment by biological monitoring. Chemosphere 185:462–467

    Article  CAS  PubMed  Google Scholar 

  • Gong W, Wang J, Cui W, Zhu L (2021) Distribution characteristics and risk assessment of TBBPA in seawater and zooplankton in northern sea areas, China. Environ Geochem Health 43:4759–4769

    Article  CAS  PubMed  Google Scholar 

  • Guillard R, Ryther J (1962) Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239

    Article  CAS  PubMed  Google Scholar 

  • Hardya ML, Krueger HO, Blankinship AS, Thomas S, Kendall TZ, Desjardins D (2012) Studies and evaluation of the potential toxicity of decabromodiphenyl ethane to five aquatic and sediment organisms. Ecotoxicol Environ Saf 75:73–79

    Article  Google Scholar 

  • Howard P, Muir D (2013) Identifying new persistent and bioaccumulative organics Among chemicals in commerce. III: Byproducts, impurities, and transformation product. Environ Sci Technol 47:5259–5266

    Article  CAS  PubMed  Google Scholar 

  • Kamalanathan M, Chiu M, Bacosa H, Schwehr K, Tsai S, Doyle S, Yard A, Mapes S, Vasequez C, Bretherton L, Sylvan J, Santschi P, Chin W, Quigg A (2019) Role of polysaccharides in diatom Thalassiosira pseudonana and its associated bacteria in hydrocarbon presence. Plant Physiol 180:1898–1911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koonin E, Aravind L (2002) Origin and evolution of eukaryotic apoptosis: the bacterial connection. Cell Death Differ 9:394–404

    Article  CAS  PubMed  Google Scholar 

  • Lee BM, Shin H, Hur J (2013) Comparison of the characteristics of extracellular polymeric substances for two different extraction methods and sludge formation conditions. Chemosphere 90:237–244

    Article  CAS  PubMed  Google Scholar 

  • Lian Z, Yang Z, Song W, Sun M, Gan Y, Bai X (2022) Characteristics of EPS from Pseudomonas aeruginosa and Alcaligenes faecalis under Cd (II) stress: changes in chemical components and adsorption performance. Environ Sci Pollut Res 29:75883–75895

    Article  CAS  Google Scholar 

  • Liu H, Yu Y, Kong F, He L, Yu H, Giesy J, Wang X (2008) Effects of tetrabromobisphenol A on the green alga Chlorella pyrenoidosa. J Environ Sci Health A 43:1271–1278

    Article  CAS  Google Scholar 

  • Lv M, Tang X, Zhao Y, Li J, Zhang B, Li L, Jiang Y, Zhao Y (2020) The toxicity, bioaccumulation and debromination of BDE-47 and BDE-209 in Chlorella sp. under multiple exposure modes. Sci Total Environ 723:138086

  • Lv M, Zhao Y, Li D, Zhang B, Li L, Liu Z, Tang XX, Zhao Y (2023) The adsorption and absorption kinetics of BDE-47 by Chlorella sp. and the role of extracellular polymer substances influenced by environmental factors. Environ Res 216:114698

  • Mayers JJ, Flynn KJ, Shields RJ (2013) Rapid determination of bulk microalgal biochemical composition by Fourier-Transform Infrared spectroscopy. Bioresour Technol 148:215–220

    Article  CAS  PubMed  Google Scholar 

  • Naveed S, Li C, Lu X, Chen S, Yin B, Zhang C, Ge Y (2019) Microalgal extracellular polymeric substances and their interactions with metal(loid)s: A review. Crit Rev Environ Sci Technol 49:1769–1802

    Article  CAS  Google Scholar 

  • Onogbosele CO, Scrimshaw MD (2014) Hexabromocyclododecane and hexachlorocyclohexane: How lessons learnt have led to improved regulation. Crit Rev Environ Sci Technol 44:1423–1442

    Article  CAS  Google Scholar 

  • Passow U, Alldredge AL, Logan BE (1994) The role of particulate carbohydrate exudates in the flocculation of diatom blooms. Deep Sea Res I 41:335–357

    Article  CAS  Google Scholar 

  • Pittinger C, Pecquet A (2018) Review of historical aquatic toxicity and bioconcentration data for the brominated flame retardant tetrabromobisphenol A (TBBPA): effects to fish, invertebrates, algae, and microbial communities. Environ Sci Pollut Res 25:14361–14372

    Article  CAS  Google Scholar 

  • Platt T, Gallegos C, Harrison W (1980) Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J Mar Res 38:687–701

    Google Scholar 

  • Qiao H, Zang S, Yan F, Xu Z, Wang L, Wu H (2021) Physiological responses of the diatoms Thalassiosira weissflogii and Thalassiosira pseudonana to nitrogen starvation and high light. Mar Environ Res 166:105276

    Article  CAS  PubMed  Google Scholar 

  • Quigg A, Chin W, Chen C, Zhang S, Jiang Y, Miao A, Schwehr HA, Santschi PH (2013) Direct and indirect toxic effects of engineered nanoparticles on algae: role of natural organic matter. ACS Sustain Chem Eng 1:686–702

    Article  CAS  Google Scholar 

  • Quigg A, Passow U, Chin WC, Xu C, Doyle S, Bretherton L, Kamalanathan M, Williams AK, Sylvan JB, Finkel ZV, Knap AH, Schwehr KA, Zhang S, Sun L, Wade TL, Obeid W, Hatcher PG, Santschi PH (2016) The role of microbial exopolymers in determining the fate of oil and chemical dispersants in the ocean. Limnol Oceanogr Lett 1:3–26

    Article  Google Scholar 

  • Qu P, Pang M, Wang P, Ma X, Zhang Z, Wang Z, Gong Y (2022) Bioaccumulation of mercury along continuous fauna trophic levels in the Yellow River Estuary and adjacent sea indicated by nitrogen stable isotopes. J Hazard Mater 432:128631

    Article  CAS  PubMed  Google Scholar 

  • Santschi P, Xu C, Schwehr K, Lin P, Sun L, Chin W, Quigg A (2020) Can the protein/carbohydrate (P/C) ratio of exopolymeric substances (EPS) be used as a proxy for their ‘stickiness’ and aggregation propensity? Mar Chem 218:103734

    Article  CAS  Google Scholar 

  • Sheng Guo, Yu H, Li X (2010) Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review. Biotechnol Adv 28:882-894

  • Shiu RF, Chiu MH, Vazquez CI, Tsai YY, Le A, Kagiri A, Xu C, Kamalanathan M, Bacosa HP, Doyle SM, Sylvan JB, Santschi PH, Quigg A, Chin WC (2020a) Protein to carbohydrate (P/C) ratio changes in microbial extracellular polymeric substances induced by oil and Corexit. Mar Chem 223:103789

    Article  CAS  Google Scholar 

  • Shiu RF, Vazquez CI, Chiang CY, Chiu MH, Chen CS, Ni CW, G GC, Quigg A, Santschi P, Chin WC (2020b) Nano- and microplastics trigger secretion of protein-rich extracellular polymeric substances from phytoplankton. Sci Total Environ 748:141469

  • Shou W, Kang F, Lu J (2018) Nature and value of freely dissolved EPS ecosystem services: insight into molecular coupling mechanisms for regulating metal toxicity. Environ Sci Technol 52:457–466

    Article  CAS  PubMed  Google Scholar 

  • Steele D, Franklin D, Underwood G (2014) Protection of cells from salinity stress by extracellular polymeric substances in diatom biofilms. Biofouling 30:987–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • UNEP (2022) The new POPs under the Stockholm convention. https://chm.pops.int/TheConvention/ThePOPs/TheNewPOPs/tabid/2511/Default.aspx

  • Verdugo P (2012) Marine microgels. Annu Rev Mar Sci 4:375–400

    Article  Google Scholar 

  • Wang X, Jiang F, Cao W, Chen J, Zheng L, Feng L (2013) Acute toxic effect of hexabromocyclododecane and tetrabromobisphenol A on four marine microalgae. Mar Environ Sci 32:832–835 ( In Chinese)

    Google Scholar 

  • Wingender J, Neu TR, Flemming H-C (1999) What are bacterial extracellular polymeric substances? Wingender J, Neu TR, Flemming H-CMicrobial extracellular polymeric substances: characterization, structures and function. Springer, Berlin, pp 1–19

    Chapter  Google Scholar 

  • Xiao R, Zheng Y (2016) Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotechnol Adv 34:1225–1244

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Wang S, Liu H, Yan Z (2012) Tetrabromobisphenol A: tissue distribution in fish, and seasonal variation in water and sediment of Lake Chaohu, China. Environ Sci Pollut Res 19:4090–4096

    Article  CAS  Google Scholar 

  • Zhang J, Zhou F, Liu Y, Huang F, Zhang C (2020) Effect of extracellular polymeric substances on arsenic accumulation in Chlorella pyrenoidosa. Sci Total Environ 704:135368

    Article  CAS  PubMed  Google Scholar 

  • Zhao T, Liu Y (2010) N-acetylcysteine inhibit biofilms produced by Pseudomonas aeruginosa. BMC Microbiol 10:140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Lin X, Qu K, Xia B, Sun X, Chen B (2019a) Toxicity of BDE-47, BDE-99 and BDE-153 on swimming behavior of the unicellular marine microalgae Platymonas subcordiformis and implications for seawater quality assessment. Ecotoxicol Environ Saf 174:408–416

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Tang X, Lv M, Liu Q, Li J, Zhang B, Li L, Zhang X, Zhao Y (2020a) The molecular response mechanisms of a diatom Thalassiosira pseudonana to the toxicity of BDE-47 based on whole transcriptome analysis. Aquat Toxicol 229:105669

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Tang X, Qu F, Lv M, Liu Q, Li J, Li L, Zhang B, Zhao Y (2020b) ROS-mediated programmed cell death (PCD) of Thalassiosira pseudonana under the stress of BDE-47. Environ Pollut 262:114342

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Tang X, Quigg A, Lv M, Zhao Y (2019b) The toxic mechanisms of BDE-47 to the marine diatom Thalassiosira pseudonana-a study based on multiple physiological processes. Aquat Toxicol 212:20–27

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Wang Y, Li Y, Santschi PH, Quigg A (2017) Response of photosynthesis and the antioxidant defense system of two microalgal species (Alexandrium minutum and Dunaliella salina) to the toxicity of BDE-47. Mar Pollut Bull 124:459–469

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the kind assistance from Dr. Hongbing Shao from Ocean University of China for the operations of flow cytometer.

Funding

This work was financially supported by the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology (2022QNLM040002-2; LSKJ202203206), and the Natural Science Foundation of Shandong Providence (No. ZR202112020056).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception and design of study. Luying Li: Data curation, formal analysis and writing -original draft; Xuexi Tang: Supervision; Yirong Zhao: Data analyses; Bihan Zhang: Data analyses; Yan Zhao: Conceptualization and writing-review & editing.

Corresponding author

Correspondence to Yan Zhao.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 448 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Tang, X., Zhao, Y. et al. Enhanced extracellular polymeric substances production defending microalgal cells against the stress of tetrabromobisphenol A. J Appl Phycol 35, 2945–2956 (2023). https://doi.org/10.1007/s10811-023-03093-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-023-03093-x

Keywords

Navigation