Skip to main content
Log in

Nitrogen metabolism and activity of amino acid metabolizing enzymes in the unicellular green alga Dunaliella sp. under long-term salinity and arginine treatment

  • Research
  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The accumulation of some free amino acids and their metabolism were investigated in Dunaliella sp. cells adapted to three salt levels (1, 2, and 3 M NaCl) in the presence or absence of 5 mM Arginine (Arg) to assess the relationship between salinity tolerance and nitrogen metabolism. Salt-adapted cells showed a large decrease in density depending on salt concentration but accumulated high concentrations of free amino acids such as proline, Arg, and γ-aminobutyric acid (GABA). Salinity increased the activities of enzymes involved in nitrogen metabolism, including nitrate reductase (NR), glutamine synthetase (GS), and glutamate synthase (NADH-GOGAT), as well as several amino acid metabolizing enzymes such as arginase, arginine decarboxylase (ADC), ornithine aminotransferase (OAT), glutamate dehydrogenase (GDH), and glutamate decarboxylase (GDC). Arg treatment improved cell density at suspensions of 1 and 2 M NaCl, which was associated with a high accumulation in glutamate and GABA and decreased Arg and proline. In contrast, Arg and GABA accumulated in Arg-treated cells at 3 M NaCl, without changes in proline and glutamate levels. Accumulation of GABA in Arg-treated cells occurred while GDC activity decreased or remained unchanged. Like amino acids, the activities of all enzymes involved in amino acid metabolization were differently changed by the Arg treatment. These results favor a determining role for nitrogen metabolism in tolerance of Dunaliella sp. cells to long-term salinity. Arg treatment balances the metabolism of carbon and nitrogen, perhaps by different modifying the activity of nitrogen and amino acid metabolizing enzymes and operating the biosynthesis of signaling molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary material files.

References

  • Abd El-Baki GK, Siefritz F, Man H-M, Weiner H, Kaldenhoff R, Kaiser WM (2000) Nitrate reductase in Zea mays L. under salinity. Plant Cell Environ 23:515–521

    Article  CAS  Google Scholar 

  • Ahmed AMA, El-Gohary AE, Osman SA, Khalid KA (2020) Arginine and salinity stress affect morphology and metabolism of Indian borage (Plectranthus amboinicus Lour.). Acta Ecol Sinica 40:417–424

  • Alisofi S, Einali A, Sangtarash MH (2020) Jasmonic acid-induced metabolic responses in bitter melon (Momordica charantia) seedlings under salt stress. J Hort Sci Biotechnol 95:247–259

    Article  CAS  Google Scholar 

  • Amin AS, Zareh MM (1996) Acetylacetone-formaldehyde reagent for the spectrophotometric determination of some sulfa drugs in pure and dosage forms. Mikrochim Acta 124:227–233

    Article  CAS  Google Scholar 

  • Arora N, Nanda M, Kumar V (2022) Sustainable algal biorefineries: capitalizing on many benefits of GABA. Trends Biotechnol 41:600–603

    Article  PubMed  Google Scholar 

  • Aslam M, Huffaker RC, Rains DW (1984) Early effects of salinity on nitrate assimilation in barley seedlings. Plant Physiol 76:321–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avron M, Ben-Amotz A (1992) Dunaliella: physiology, biochemistry and biotechnology. CRC Press, Boca Raton

    Google Scholar 

  • Bamary Z, Einali A (2022) Changes in carbon partitioning and pattern of antioxidant enzyme activity induced by arginine treatment in the green microalga Dunaliella salina under long-term salinity. Microb Ecol 84:198–212

    Article  CAS  PubMed  Google Scholar 

  • Barera S, Forlani G (2023) The role of proline in the adaptation of eukaryotic microalgae to environmental stress: An underestimated tool for the optimization of algal growth. J Appl Phycol 35:1635–1648

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–208

    Article  CAS  Google Scholar 

  • Bazzani E, Lauritano C, Mangoni O, Bolinesi F, Saggiomo M (2021) Chlamydomonas responses to salinity stress and possible biotechnological exploitation. J Mar Sci Eng 9:1242

    Article  Google Scholar 

  • Borowitzka MA (2013) Dunaliella: biology, production, and markets. In: Richmond A, Hu Q (eds) Handbook of microalgal culture. John Wiley & Sons Ltd, Oxford, pp 359–368

    Chapter  Google Scholar 

  • Borowitzka MA, Siva CJ (2007) The taxonomy of the genus Dunaliella (Chlorophyta, Dunaliellales) with emphasis on themarine and halophilic species. J Appl Phycol 19:567–590

    Article  Google Scholar 

  • Bown AW, Shelp BJ (1997) The metabolism and functions of γ-aminobutyric acid. Plant Physiol 115:1–5

  • Chamizo-Ampudia A, Sanz-Luque E, Llamas Á, Ocaña-Calahorro F, Mariscal V, Carreras A, Barroso JB, Galván A, Fernández E (2016) A dual system formed by the ARC and NR molybdoenzymes mediates nitrite-dependent NO production in Chlamydomonas. Plant Cell Environ 39:2097–2107

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Jiang JG, Wu GH (2009) Effect of salinity changes on the growth of Dunaliella salina and its isozyme activates of glycerol-3-phosphate dehydrogenase. J Agric Food Chem 57:6178–6182

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Tian D, Kong X et al (2016) The role of nitric oxide signalling in response to salt stress in Chlamydomonas reinhardtii. Planta 244:651–669

    Article  PubMed  Google Scholar 

  • Chinard FP (1952) Photometric estimation of proline and ornithine. J Biol Chem 199:91–95

    Article  CAS  PubMed  Google Scholar 

  • Cohen E, Arad SM, Heimer YM, Mizrahi Y (1983) Polyamine biosynthetic-enzymes in Chlorella—characterization of ornithine and arginine decarboxylase. Plant Cell Physiol 24:1003–1010

    CAS  Google Scholar 

  • Cohn VH, Shore PA (1961) A microfluorometric method for the determination of agmatine. Anal Biochem 2:237–241

    Article  CAS  PubMed  Google Scholar 

  • Cozzani I (1970) Spectrophotometric assay of L-glutamic acid decarboxylase. Anal Biochem 33:125–131

    Article  CAS  PubMed  Google Scholar 

  • del Rio MJ, Ramazanov Z, García-Reina G (1993) Dark induction of nitrate reductase in the halophilic alga Dunaliella salina. Planta 192:40–45

    Article  Google Scholar 

  • Deng Y, Xu L, Zeng X, Li Z, Qin B, He N (2010) New perspective of GABA as an inhibitor of formation of advanced lipoxidation end-products: it’s interaction with malondiadehyde. J Biomed Nanotechnol 6:318

    Article  CAS  PubMed  Google Scholar 

  • Ding W, Cui J, Zhao Y, Han B, Li T, Zhao P, Xu JW, Yu X (2019) Enhancing Haematococcus pluvialis biomass and γ-aminobutyric acid accumulation by two-step cultivation and salt supplementation. Bioresour Technol 285:121334

    Article  CAS  PubMed  Google Scholar 

  • Einali A (2018) The induction of salt stress tolerance by propyl gallate treatment in green microalga Dunaliella bardawil, through enhancing ascorbate pool and antioxidant enzymes activity. Protoplasma 255:601–611

    Article  CAS  PubMed  Google Scholar 

  • Einali A, Valizadeh J (2015) Propyl gallate promotes salt stress tolerance in green microalga Dunaliella salina by reducing free radical oxidants and enhancing β-carotene production. Acta Physiol Plant 37:83

  • Flynn KJ, Butler I (1986) Nitrogen sources for the growth of marine microalgae: role of dissolved free amino acids. Mar Ecol Prog Ser 34:281–304

    Article  CAS  Google Scholar 

  • Flynn KJ, Wright CRN (1986) The simultaneous assimilation of ammonium and L-arginine by the diatom Phaeodactylum tricornutum Bohlin. J Exp Mar Biol Ecol 95:257–269

  • Foflonker F, Ananyev G, Qiu H, Morrison A, Palenik B, Dismukes GC, Bhattacharya D (2016) The unexpected extremophile: Tolerance to fluctuating salinity in the green alga Picochlorum. Algal Res 16:465–472

    Article  Google Scholar 

  • Foresi N, Calo G, Del Castello F, Nejamkin A, Salerno G, Lamattina L, Martinez-Noel G, Correa-Aragunde N (2022) Arginine as the sole nitrogen source for Ostreococcus tauri growth: Insights on nitric oxide synthase enzyme. Front Mar Sci 9:1064077

    Article  Google Scholar 

  • Foresi N, Correa-Aragunde N, Parisi G, Calo G, Salerno G, Lamattina L (2010) Characterization of a nitric oxide synthase from the plant kingdom: NO generation from the green alga Ostreococcus tauri is light irradiance and growth phase dependent. Plant Cell 22:3816–3830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuell C, Elliott KA, Hanfrey CC, Franceschetti M, Michael AJ (2010) Polyamine biosynthetic diversity in plants and algae. Plant Physiol Biochem 48:513–520

    Article  CAS  PubMed  Google Scholar 

  • Galvan-Ampudia CS, Testerink C (2011) Salt stress signals shape the plant root. Curr Opin Plant Biol 14:296–302

    Article  CAS  PubMed  Google Scholar 

  • Gao G, Qu L, Xu T, Burgess JG, Li X, Xu J (2019) Future CO2-induced ocean acidification enhances resilience of a green tide alga to low-salinity stress. ICES J Mar Sci 76:2437–2445

  • Garcia F, Freile-Pelegrin Y, Robledo D (2007) Physiological characterization of Dunaliella sp. (Chlorophyta, Volvocales) from Yucatan, Mexico. Bioresour Technol 98:1359–1365

    Article  CAS  PubMed  Google Scholar 

  • Geladopoulos TP, Sotiroudis TG, Evangelopoulos AE (1991) A malachite green colorimetric assay for protein phosphatase activity. Anal Biochem 192:112–116

    Article  CAS  PubMed  Google Scholar 

  • Goldraij A, Polacco JC (1999) Arginase is inoperative in developing soybean embryos. Plant Physiol 119:297–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldschmidt MC, Lockhart BM (1971) Simplified rapid procedure for determination of agmatine and other guanidino-containing compounds. Anal Chem 43:1475–1479

    Article  CAS  PubMed  Google Scholar 

  • Gong B, Wen D, Bloszies S, Li X, Wei M, Yang F, Shi Q, Wang X (2014) Comparative effects of NaCl and NaHCO3 stresses on respiratory metabolism, antioxidant system, nutritional status, and organic acid metabolism in tomato roots. Acta Physiol Plant 36:2167–2181

    Article  CAS  Google Scholar 

  • Greenberg DM (1955) Enzymes of protein metabolism. Meth Enzymol 2:368–374

  • Hageman RH, Hucklesby DP (1971) Nitrate reductase from higher plants. Meth Enzymol 23:491–503

    Article  Google Scholar 

  • Hellebust JA, Le Gresley SML (1985) Growth characteristics of the marine rock pool flagellate Chlamydomonas pulsatilla Wollenweber (Chlorophyta). Phycologia 24:225–229

    Article  Google Scholar 

  • Henley WJ, Hironaka JL, Guillou L, Buchheim MA, Buchheim JA, Fawley MW, Fawley KP (2004) Phylogenetic analysis of the ‘Nannochloris-like’algae and diagnoses of Picochlorum oklahomensis gen. et sp. nov. (Trebouxiophyceae, Chlorophyta). Phycologia 43:641–652

  • Illingworth C, Mayer MJ, Elliott K, Hanfrey C, Walton NJ, Michael AJ (2003) The diverse bacterial origins of the Arabidopsis polyamine biosynthetic pathway. FEBS Lett 549:26–30

    Article  CAS  PubMed  Google Scholar 

  • Imamura S, Kanesaki Y, Ohnuma M, Inouye T, Sekine Y, Fujiwara T, Kuroiwa T, Tanaka K (2009) R2R3-type MYB transcription factor, CmMYB1, is a central nitrogen assimilation regulator in Cyanidioschyzon merolae. Proc Natl Acad Sci USA 106:12548–12553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inokuchi R, Itagaki T, Wiskich JT, Nakayama K, Okada M (1997) An NADP-glutamate dehydrogenase from the green alga Bryopsis maxima. Purification and properties. Plant Cell Physiol 38:327–335

    Article  CAS  PubMed  Google Scholar 

  • Javier F, Gordillo L, Jiménez C, Corzo A, Niell FX (1997) Optimized nitrate reductase assay predicts the rate of nitrate utilization in the halotolerant microalga Dunaliella viridis. J Appl Phycol 9:99–106

    Article  Google Scholar 

  • Jimenez C, Niell FX (1991) Growth of Dunaliella viridis Teodoresco: effect of salinity, temperature and nitrogen concentration. J Appl Phycol 3:319–327

    Article  CAS  Google Scholar 

  • Kalra I, Wang X, Cvetkovska M, Jeong J, McHargue W, Zhang R, Hüner N, Yuan JS, Morgan-Kiss R (2020) Chlamydomonas sp. UWO 241 Exhibits high cyclic electron flow and rewired metabolism under high salinity. Plant Physiol 183:588–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanwal S, Incharoensakdi A (2019) The role of GAD pathway for regulation of GABA accumulation and C/N balance in Synechocystis sp. PCC6803. J Appl Phycol 31:3503–3514

    Article  Google Scholar 

  • Kanwal S, Incharoensakdi A (2020) GABA synthesis mediated by γ-aminobutanal dehydrogenase in Synechocystis sp. PCC6803 with disrupted glutamate and α-ketoglutarate decarboxylase genes. Plant Sci 290:110287

  • Karladee D, Suriyong S (2012) γ-Aminobutyric acid (GABA) content in different varieties of brown rice during germination. Sci Asia 38:13–17

    Article  CAS  Google Scholar 

  • Kasinathan V, Wingler A (2004) Effect of reduced arginine decarboxylase activity on salt tolerance and polyamine formation during salt stress in Arabidopsis thaliana. Physiol Plant 121:101–107

    Article  CAS  PubMed  Google Scholar 

  • Katiyar S, Dubey R (1992) Influence of NaCl salinity on behaviours of nitrate reductase and nitrite reductase in rice seedlings differing in salt tolerance. J Agron Crop Sci 169:289–297

    Article  CAS  Google Scholar 

  • Kaur M, Saini KC, Ojah H, Sahoo R, Gupta K, Kumar A, Bast F (2022) Abiotic stress in algae: response, signaling and transgenic approaches. J Appl Phycol 34:1843–1869

    Article  Google Scholar 

  • Kim HR, Rho HW, Park JW, Park BH, Kim JS, Lee MW (1994) Assay of ornithine aminotransferase with ninhydrin. Anal Biochem 223:205–207

  • Kirk DL, Kirk MM (1978) Carrier-mediated uptake of arginine and urea by Chlamydomonas reinhardtii. Plant Physiol 61:556–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitaoka S, Nakano Y (1969) Colorimetric determination of omega-amino acids. J Biochem 66:87–94

    Article  CAS  PubMed  Google Scholar 

  • Kovacik J, Klejdus B, Hedbavny J, Backor M (2010) Effect of copper and salicylic acid on phenolic metabolites and free amino acids in Scenedesmus quadricauda (Chlorophyceae). Plant Sci 178:307–311

    Article  CAS  Google Scholar 

  • Krell A, Funck D, Plettner I, John U, Dieckmann G (2007) Regulation of proline metabolism under salt stress in the psychrophilic diatom Fragilariopsis cylindrus (Bacillariophyceae). J Phycol 43:753–762

    Article  CAS  Google Scholar 

  • Lapina T, Statinov V, Puzanskiy R, Ermilova E (2022) Arginine-dependent nitric oxide generation and s-nitrosation in the non-photosynthetic unicellular alga Polytomella parva. Antioxidants 11:949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin HY, Lin HJ (2019) Polyamines in microalgae: something borrowed, something new. Mar Drugs 17:1

    Article  Google Scholar 

  • Liska AJ, Shevchenko A, Pick U, Katz A (2004) Enhanced photosynthesis and redox energy production contribute to salinity tolerance in Dunaliella as revealed by homology-based proteomics. Plant Physiol 136:2806–2817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu JH, Nada K, Honda C, Kitashiba H, Wen XP, Pang XM, Moriguchi T (2006) Polyamine biosynthesis of apple callus under salt stress: importance of the arginine decarboxylase pathway in stress response. J Exp Bot 57:2589–2599

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Zhang J, Hu C, Sun X, Xu N (2021) Physiological and transcriptome analysis of γ-aminobutyric acid (GABA) in improving Gracilariopsis lemaneiformis stress tolerance at high temperatures. Algal Res 60:102532

    Article  Google Scholar 

  • Mastrobuoni G, Irgang S, Pietzke M, Aßmus HE, Wenzel M, Schulze WX, Kempa S (2012) Proteome dynamics and early salt stress response of the photosynthetic organism Chlamydomonas reinhardtii. BMC Genomics 13:215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLean RO, Corrigan J, Webster J (1981) Heterotrophic nutrition in Melosira nummuloides, a possible role in affecting distribution in the Clyde Estuary. Br Phycol J 16:95–106

    Article  Google Scholar 

  • Mehta SK, Gaur JP (1999) Heavy metal-induced proline accumulation and its role in ameliorating metal toxicity in Chlorella vulgaris. New Phytol 143:253–259

    Article  CAS  Google Scholar 

  • Miflin BJ, Lea PJ (1975) Glutamine and asparagine as nitrogen donors for reductant dependent glutamate synthesis in pea roots. Biochem J 149:403–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller AJ, Fan X, Shen Q, Smith SJ (2007) Amino acid and nitrate as signals for the regulation of nitrogen acquisition. J Exp Bot 59:111–119

    Article  PubMed  Google Scholar 

  • Mirshekari M, Einali A, Valizadeh J (2019) Metabolic changes and activity pattern of antioxidant enzymes induced by salicylic acid treatment in green microalga Dunaliella salina under nitrogen deficiency. J Appl Phycol 31:1709–1719

    Article  CAS  Google Scholar 

  • Mishra A, Jha B (2011) Antioxidant response of the microalga Dunaliella salina under salt stress. Bot Mar 54:195–199

  • Mishra A, Mandoli A, Jha B (2008) Physiological characterization and stress-induced metabolic responses of Dunaliella salina isolated from salt pan. J Ind Microbiol Biotechnol 35:1093–1101

    Article  CAS  PubMed  Google Scholar 

  • Mtolera MS (2003) Some properties of glutamate dehydrogenase from the marine red alga Gracilaria sordida (Harv.) W. Nelson. West Indian Ocean J Mar Sci 2:179–186

  • Nikitashina V, Stettin D, Pohnert G (2022) Metabolic adaptation of diatoms to hypersalinity. Phytochemistry 201:113267

    Article  CAS  PubMed  Google Scholar 

  • Ramadan AA, Abd Elhamid EM, Sadak MS (2019) Comparative study for the effect of arginine and sodium nitroprusside on sunflower plants grown under salinity stress conditions. Bull Natl Res Cent 43:118

    Article  Google Scholar 

  • Rao KR, Gnaham A (1990) Inhibition of nitrate and nitrate reductase activity by salinity stress in Sorghum vulgare. Phytochemistry 29:1047–1049

    Article  CAS  Google Scholar 

  • Rees TAV, Larson TR, Heldeus JWG, Huning FGJ (1995) In situ glutamine synthetase activity in a marine unicellular alga. Development of a sensitive colorimetric assay and the effects of nitrogen status on enzyme activity. Plant Physiol 109:1405–1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Restivo FM (2004) Molecular cloning of glutamate dehydrogenase genes of Nicotiana plumbaginifolia: structure analysis and regulation of their expression by physiological and stress conditions. Plant Sci 166:971–982

    Article  CAS  Google Scholar 

  • Robe E (1990) Stress physiology: the functional significance of the accumulation of nitrogen-containing compounds. J Hort Sci 65:231–243

    Article  Google Scholar 

  • Roubelakis KA, Kliewer WM (1978) Enzymes of Krebs-Henseleit in Vitis vinifera L. Plant Physiol 62:344–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sairam RK, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci 86:407–421

    CAS  Google Scholar 

  • Sastry CSP, Tummuru MK (1984) Spectrophotometric determination of arginine in proteins. Food Chem 15:257–260

    Article  CAS  Google Scholar 

  • Shatilov VR, Sund H (1983) Glutamate dehydrogenase of the unicellular green alga Scendesmus acutus. Substrate induced conformational transition. Planta 157:367–370

    Article  CAS  PubMed  Google Scholar 

  • Shelp BJ, Bown AW, Zarei A (2017) 4-Aminobutyrate (GABA): a metabolite and signal with practical significance. Botany 95:1015–1032

    Article  CAS  Google Scholar 

  • Shelp BJ, Bozzo GG, Trobacher CP, Zarei A, Deyman KL, Brikis CJ (2012) Hypothesis/review: contribution of putrescine to 4-aminobutyrate (GABA) production in response to abiotic stress. Plant Sci 193–194:130–135

    Article  PubMed  Google Scholar 

  • Sheyhakinia S, Bamary Z, Einali A, Valizadeh J (2020) The induction of salt stress tolerance by jasmonic acid treatment in roselle (Hibiscus sabdariffa L.) seedlings through enhancing antioxidant enzymes activity and metabolic changes. Biologia 75:681–692

    Article  CAS  Google Scholar 

  • Stitt M, Muller C, Matt P, Gibon Y, Carillo P, Morcuende R, Scheible WR, Krapp A (2002) Steps towards an integrated view of nitrogen metabolism. J Exp Bot 53:959–970

    Article  CAS  PubMed  Google Scholar 

  • Takagi M, Karseno, Yoshida T (2006) Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J Biosci Bioeng 101:223–226

  • Tassoni A, Awad N, Griffiths G (2018) Effect of ornithine decarboxylase and norspermidine in modulating cell division in the green alga Chlamydomonas reinhardtii. Plant Physiol Biochem 123:125–131

    Article  CAS  PubMed  Google Scholar 

  • Vallon O, Spalding MH (2009) Amino acid metabolism. In: Harris EH, Stern DB, Witman GB (eds) The Chlamydomonas Sourcebook, 2nd edn. Academic Press, London, p 115–158

  • Wang R, Tischner R, Gutierrez RA, Hoffman M, Xing X, Chen M, Coruzzi G, Crawford NM (2004) Genomic analysis of the nitrate response using a nitrate reductase-null mutant of Arabidopsis. Plant Physiol 136:2512–2522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weisslocker-Schaetzel M, Andre F, Touazi N, Foresi N, Lembrouk M, Dorlet P, Frelet-Barrand A, Lamattina L, Santolini J (2017) The NOS-like protein from the microalgae Ostreococcus tauri is a genuine and ultrafast NO-producing enzyme. Plant Sci 265:100–111

    Article  CAS  PubMed  Google Scholar 

  • Winter G, Todd CD, Trovato M, Forlani G, Funck D (2015) Physiological implications of arginine metabolism in plants. Front Plant Sci 6:534

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu X, Jia Q, Ji S, Gong B, Li J, Lu G, Gao H (2020) Gamma-aminobutyric acid (GABA) alleviates salt damage in tomato by modulating Na+ uptake, the GAD gene, amino acid synthesis and reactive oxygen species metabolism. BMC Plant Biol 20:465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong W, Brune VFD (2014) The γ-aminobutyric acid shunt contributes to closing the tricarboxylic acid cycle in Synechocystis sp. PCC 6803. Mol Microbiol 93:786–796

    Article  CAS  PubMed  Google Scholar 

  • Yemm EW, Cocking EC (1955) The determination of amino acids with Ninhydrin. Analyst 80:209–213

    Article  CAS  Google Scholar 

  • Young EB, Dring MJ, Savidge G, Birkett DA, Berges JA (2007) Seasonal variations in nitrate reductase activity and internal N pools in intertidal brown algae are correlated with ambient nitrate concentrations. Plant Cell Environ 30:764–774

    Article  CAS  PubMed  Google Scholar 

  • Zalutskaya Z, Derkach V, Puzanskiy R, Ermilova E (2020) Impact of nitric oxide on proline and putrescine biosynthesis in Chlamydomonas via transcriptional regulation. Biol Plant 64:642–648

    Article  CAS  Google Scholar 

  • Zeid IM (2009) Effect of arginine and urea on polyamines content and growth of bean under salinity stress. Acta Physiol Plant 31:65–70

    Article  CAS  Google Scholar 

  • Zhang J, Liu S, Hu C, Chen X, Sun X, Xu N (2021) Physiological and transcriptome analysis of exogenous L-arginine in the alleviation of high-temperature stress in Gracilariopsis lemaneiformis. Front Mar Sci 8:784586

    Article  Google Scholar 

  • Zhang Z, Qu C, Zhang K, He Y, Zhao X, Yang L, Zheng Z, Ma X, Wang X, Wang W, Wang K (2020) Adaptation to extreme Antarctic environments revealed by the genome of a sea ice green alga. Curr Biol 30:3330–3341

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Song X, Zhong D-B, Yu L, Yu X (2020) γ-Aminobutyric acid (GABA) regulates lipid production and cadmium uptake by Monoraphidium sp. QLY-1 under cadmium stress. Bioresour Technol 297:122500

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the USB Deputy of Research for monetary contributions in the form of a grant for M.Sc. research project.

Funding

This work was funded by the Deputy of Research at the University of Sistan and Baluchestan in the form of a grant for M.Sc. research project.

Author information

Authors and Affiliations

Authors

Contributions

Z.B. carried out all of the laboratory research. A.E. designed the experiment, provided all the technical support during the laboratory work, analyzed data and wrote the manuscript. All authors have read and approved the submitted manuscript.

Corresponding author

Correspondence to Alireza Einali.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 31 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bamary, Z., Einali, A. Nitrogen metabolism and activity of amino acid metabolizing enzymes in the unicellular green alga Dunaliella sp. under long-term salinity and arginine treatment. J Appl Phycol 35, 2801–2813 (2023). https://doi.org/10.1007/s10811-023-03065-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-023-03065-1

Keywords

Navigation