Skip to main content

Advertisement

Log in

PAR regulation of photoprotection in Phaeodactylum tricornutum (Bacillariophyceae): Roles of doses and irradiances

  • Research
  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Photosynthetic diatoms are exposed to a rapid and unexpected variations in light intensity that can modulate the contents of photosynthetic pigments and the carotenoid profile. In this study, the influence of light availability on photoprotection in the diatom Phaeodactylum tricornutum was investigated. Experimental cultures were exposed to three irradiances (100, 200 and 400 µmol photons m−2 s−1) and two light: dark cycles (12:12 and 24:00 h) that resulted in different light energy daily doses (D = 4.32 mol photons m−2), where the treatments were named in NDxh (N = amount of daily doses D, and x = photoperiod in hours). The samples treated at different doses were compared in terms of cell growth, chlorophyll-a fluorescence, pigment content and gene transcription levels. Specific growth rate was 1.9-fold higher in 8D24h daily dose (34.56 mol photons m−2) with 3 times higher light absorption in comparison to the lowest light energy dose. Also, at higher light intensities the content of chlorophyll-a, fucoxanthin and diadinoxanthin in P. tricornutum was lower, while the regulation of the xanthophyll cycle was achieved by the highest light energy doses. The transcriptional profiles of ZEP1, ZEP2, VDL1 and VDL2 genes were influenced by the highest light energy doses, on the other hand VDE and ZEP3 genes were poorly regulated by light. In addition, a similar transcription pattern was found for two isoforms of ZEP genes as well as in VDL genes. This study demonstrated that light energy doses and irradiances affect the photoacclimation and photoprotection responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  • Andrade KAM, Lauritano C, Romano G, Ianora A (2018) Marine microalgae with anti-cancer properties. Mar Drugs 16:165

    Article  Google Scholar 

  • APHA (2011) Standard methods for the examination of water and waste water. American Public Health Association, Washington DC

    Google Scholar 

  • Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou S, Allen AE, Apt KE, Bechner M et al (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86

    Article  CAS  PubMed  Google Scholar 

  • Bai Y, Cao T, Dautermann O, Buschbeck P, Cantrell MB, Chen Y, Lein CD, Shi X, Ware MA, Yang F, Zhang H, Zhang L, Peers G, Li X, Lohr M (2022) Green diatom mutants reveal an intricate biosynthetic pathway of fucoxanthin. Proc Natl Acad Sci U S A 119:e2203708119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer CM, Schmitz C, Corrêa RG, Herrera CM, Ramlov F, Oliveira ER, Pizzato A, Varela LAC, Cabral DQ, Yunes RA, Lopes RG, Cella H, Rocha M, Rorig LR, Derner RB, Abreu PC, Maraschin M (2019) In vitro fucoxanthin production by the Phaeodactylum tricornutum diatom. In: Rahman A (ed) Studies in Natural Products Chemistry, vol 63. Elsevier, Amsterdam, pp 211–242

    Google Scholar 

  • Blommaert L, Chafai L, Bailleul B (2021) The fine-tuning of NPQ in diatoms relies on the regulation of both xanthophyll cycle enzymes. Sci Rep 11:12750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, Maheswari U, Martens C, Maumus F, Otillar RP et al (2008) Phaeodactylum tricornutum genome reveals the evolutionaty history of diatom genomes. Nature 456:239–244

    Article  CAS  PubMed  Google Scholar 

  • Broddrick JT, Du N, Smith SR, Tsuji Y, Jallet D, Ware MA, Peers G, Matsuda Y, Dupont CL, Mitchell BG, Palsson BO, Allen AE (2019) Cross-compartment metabolic coupling enables flexible photoprotective mechanisms in the diatom Phaeodactylum tricornutum. New Phytol 222:1364–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Büchel C, Goss R, Bailleul B, Campbell D, Lavaud J, Lepetit B (2022) Photosynthetic light reactions in diatoms. I. The lipids and light-harvesting complexes of the thylakoid membrane. In: Falciatore A, Mock T (eds) The molecular life of diatoms. Springer, Cham, pp 397–422

    Chapter  Google Scholar 

  • Bunsen R, Roscoe H (1859) Photochemische untersuchungen. Ann Phys Chem 184:193–273

    Article  Google Scholar 

  • Coesel S, Oborník M, Varela J, Falciatore A, Bowler C (2008) Evolutionary origins and functions of the carotenoid biosynthetic pathway in marine diatoms. PLoS One 3:e2896

    Article  PubMed  PubMed Central  Google Scholar 

  • Conceição D, Lopes RG, Derner RB, Cella H, do Carmo APB, D’Oca MGM, Petersen R, Passos MF, Vargas JVC, Galli-Terasawa LV, Kava V (2020) The effect of light intensity on the production and accumulation of pigments and fatty acids in Phaeodactylum tricornutum. J Appl Phycol 32:1017-1025

  • Costa BS, Jungandreas A, Jakob T, Weisheit W, Mittag M, Wilhelm C (2013) Blue light is essential for high light acclimation and photoprotection in the diatom Phaeodactylum tricornutum. J Exp Bot 64:483–493

    Article  Google Scholar 

  • Dambek M, Eilers U, Breitenback J, Steiger S, Büchel C, Sandmann G (2012) Biosynthesis of fucoxanthin and diadinoxanthin and function of initial pathway genes in Phaeodactylum tricornutum. J Exp Bot 63:5607–5612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dautermann O, Lohr M (2017) A functional zeaxanthin epoxidase from red algae shedding light on the evolution of light-harvesting carotenoids and the xanthophyll cycle in photosynthetic eukaryotes. Plant J 92:879–891

    Article  CAS  PubMed  Google Scholar 

  • Dautermann O, Lyska D, Andersen-Ranberg J, Becker M, Fröhlich-Nowolsky J, Gartmann H, Krämer LC, Mayr K, Pleper D, Rij LM, Wipf HM-L, Niyogi KK, Lohr M (2020) An algal enzyme required for biosynthesis of the most abundant marine carotenoids. Sci Adv 6:eaaw9183

  • Depauw FA, Rogato A, d’Alcalà MR, Falciatore A (2012) Exploring the molecular basis of responses to light in marine diatoms. J Exp Bot 63:1575–1591

    Article  CAS  PubMed  Google Scholar 

  • Eilers U, Dietzel L, Breitenbach J, Büchel C, Sandmann G (2016) Identification of genes coding for functional zeaxanthin epoxidases in the diatom Phaeodactylum tricornutum. J Plant Physiol 192:64–70

    Article  CAS  PubMed  Google Scholar 

  • Enríquez S, Borowitzka MA (2010) The use of the fluorescence signal in studies of seagrasses and macroalgae. In: Suggett DJ, Prášil O, Borowitzka MA (eds) Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications. Springer, Dordrecht, pp 187–208

    Chapter  Google Scholar 

  • Falciatore A, Jaubert M, Bouly J, Bailleul B, Mock T (2020) Diatom molecular research comes of age: model species for studying phytoplankton biology and diversity. Plant Cell 32:547–572

    Article  CAS  PubMed  Google Scholar 

  • Fisher NL, Campbell DA, Hughes DJ, Kuzhiumparambil U, Halsey KH, Ralph PJ, Suggett DJ (2020) Divergence of photosynthetic strategies amongst marine diatoms. PLoS One 15:e0244252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gelzinis A, Buktus V, Songaila E, Augulis R, Gall A, Büchel C, Robert B, Abramavicius D, Zigmantas D, Valkunas L (2015) Mapping energy transfer channels in fucoxanthin-chlorophyll protein complex. Biochim Biophys Acta 1847:241–247

    Article  CAS  PubMed  Google Scholar 

  • Goss R, Lepetit B (2015) Biodiversity of NPQ. J Plant Physiol 172:13–32

    Article  CAS  PubMed  Google Scholar 

  • Hippmann AA, Schuback N, Moon KM, McCrow JP, Allen AE, Foster LF, Green BR, Maldonado MT (2022) Proteomic analysis of metabolic pathways supports chloroplast-mitochondria cross-talk in a Cu-limited diatom. Plant Direct 6:e376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeffrey SW, Humphrey GF (1975) New spectrophotometric equation for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural populations. Biochem Physiol Pflanzen 167:191–194

    Article  CAS  Google Scholar 

  • Johnsen G, Sakshaug E (2007) Biooptical characteristics of PSII and PSI in 33 species (13 pigment groups) of marine phytoplankton, and the relevance for pulse-amplitude-modulated and fast-repetition-rate fluorometry. J Phycol 43:1236–1251

    Article  CAS  Google Scholar 

  • Krause-Jensen D, Sand-Jensen K (1998) Light attenuation and photosynthesis of aquatic plant communities. Limnol Oceanogr 43:396–407

    Article  CAS  Google Scholar 

  • Kuczynska P, Jemiola-Rzeminska M, Strzalka K (2015) Photosynthetic pigments in diatoms. Mar Drugs 13:5847–5881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuczynska P, Jemiola-Rzeminska M, Nowicka B, Jakubowska A, Strzalka W, Burda K, Strzalka K (2020) The xanthophyll cycle in diatom Phaeodactylum tricornutum in response to light stress. Plant Physiol Biochem 152:125–137

    Article  CAS  PubMed  Google Scholar 

  • Lavaud J, Materna AC, Sturm S, Vugrinec S, Kroth PG (2012) Silencing of the violaxanthin de-epoxidase gene in the diatom Phaeodactylum tricornutum reduces diatoxanthin synthesis and non-photochemical quenching. PLoS One 7:e36806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lepetit B, Volke D, Gilbert M, Wilhelm C, Goss R (2010) Evidence for the existence of one antenna-associated, lipid-dissolved and two protein-bound pools of diadinoxanthin cycle pigments in diatoms. Plant Physiol 154:1905–1920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lepetit B, Gélin G, Lepetit M, Sturm S, Vugrinec S, Rogato A, Kroth PG, Falciatore A, Lavaud J (2017) The diatom Phaeodactylum tricornutum adjusts nonphotochemical fluorescence quenching capacity in response to dynamic light via fine-tuned Lhcx and xanthophyll cycle pigment synthesis. New Phytol 214:205–218

    Article  CAS  PubMed  Google Scholar 

  • Lepetit B, Campbell D, Lavaud J, Büchel C, Goss R, Bailleul B (2022) Photosynthetic light reactions in diatoms. II. The dynamic regulation of the various light reactions. In: Falciatore A, Mock T (eds) The molecular life of diatoms. Springer, Cham, pp 423–464

    Chapter  Google Scholar 

  • Liu Y, Zheng J, Zhang Y, Wang Z, Yang Y, Bai M, Dai Y (2016) Fucoxanthin activates apoptosis via inhibition of PI3K/Akt/mTOR pathway and suppresses invasion and migration by restriction of p38-MMP-2/9 pathway in human glioblastoma cells. Neurochem Res 41:2728–2751

    Article  CAS  PubMed  Google Scholar 

  • Lohr M, Wilhelm C (2001) Xanthophyll synthesis in diatoms: quantification of putative intermediates and comparison of pigment conversion kinetics with rate constants derived from a model. Planta 212:382–391

    Article  CAS  PubMed  Google Scholar 

  • Lopes RG, Cella H, Mattos JJ, Marques MRF, Soares AT, Antoniosi-Filho NR, Derner RB, Rörig LR (2019) Effect of phosphorus and growth phases on the transcription levels of EPA biosynthesis genes in the diatom Phaeodactylum tricornutum. Braz J Bot 42:13–22

    Article  Google Scholar 

  • Lopes FG, Oliveira KA, Lopes RG, Poluceno GG, Simioni C, Silva GP, Bauer CM, Maraschin M, Derner RB, Garcez RG, Tasca CI, Nedel CB (2020) Anti-cancer effects of fucoxanthin on human glioblastoma cell line. Anticancer Res 40:6799–6815

    Article  CAS  PubMed  Google Scholar 

  • Malapascua JRF, Jerez CG, Sergejevová M, Figueroa FL, Masojídek J (2014) Photosynthesis monitoring to optimize growth of microalgal mass cultures: application of chlorophyll fluorescence techniques. Aquat Biol 22:123–140

    Article  Google Scholar 

  • Masojídek J, Torzillo G, Koblizek M (2013) Photosynthesis in microalgae. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: Applied Phycology and Biotechnology. Wiley-Blackwell, Oxford, pp 21–36

    Chapter  Google Scholar 

  • Nymark M, Valle KC, Brembu T, Hancke K, Winge P, Andresen K, Johnsen G, Bones AM (2013) Molecular and photosynthetic responses to prolonged darkness and subsequent acclimation to re-illumination in the diatom Phaeodactylum tricornutum. PLoS One 8:e58722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pajot A, Lavaud J, Carrier G, Lacour T, Marchal L, Nicolau E (2023) Light-response in two clonal strains of the haptophyte Tisochrysis lutea: Evidence for different photoprotection strategies. Algal Res 69:102915

    Article  Google Scholar 

  • Ragni M, d’Alcalà MR (2007) Circadian variability in the photobiology of Phaeodactylum tricornutum: pigment content. J Plankton Res 29:141–156

    Article  CAS  Google Scholar 

  • Ramanan C, Berera R, Gundermannb K, Stokkum I, Büchel C, Grondelle R (2014) Exploring the mechanism(s) of energy dissipation in the light harvesting complex of the photosynthetic algae Cyclotella meneghiniana. Biochim Biophys Acta 1837:1507–1513

    Article  CAS  PubMed  Google Scholar 

  • Rhinn H, Scherman D, Escriou V (2008) One-step quantification of single-stranded DNA in the presence of RNA using Oligreen in a real-time polymerase chain reaction thermocycler. Anal Biochem 372:116–118

    Article  CAS  PubMed  Google Scholar 

  • Ruban AV, Lavaud J, Rousseau B, Guglielmi G, Horton P, Etienne AL (2004) The super-excess energy dissipation in diatom algae: comparative analysis with higher plants. Photosynth Res 82:165–175

    Article  CAS  PubMed  Google Scholar 

  • Sales R, Derner RB, Tsuzuki MY (2019) Effects of different harvesting and processing methods on Nannochloropsis oculata concentrates and their application on rotifer Brachionus sp. cultures. J Appl Phycol 31:3607–3615

    Article  CAS  Google Scholar 

  • Serôdio J, Lavaud J (2020) Diatoms and their ecological importance. In: Leal Filho W, Azul AM, Brandi L, Lange Salvia A, Wall T. (eds) Life Below Water. Encyclopedia of the UN Sustainable Development Goals. Springer, Cham pp 1–9

  • Seydoux C, Storti M, Giovagnetti V, Matuszyńska A, Guglielmino E, Zhao X, Giustini C, Pan Y, Blommaert L, Angulo J, Ruban AV, Hu H, Bailleul B, Courtois F, Allorent G, Finazzi G (2022) Impaired photoprotection in Phaeodactylum tricornutum KEA3 mutants reveals the proton regulatory circuit of diatoms light acclimation. New Phytol 234:578–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Schmitz C, Nunes A, Bauer CM, Barufi JB, Maraschin M (2022) Monitoring the stability of the xanthophyll fucoxanthin in microalga and seaweed biomasses, and extracts stored at low temperatures. Res Soc Dev 11:e577111537712

    Article  Google Scholar 

  • Sharma N, Simon DP, Diaz-Garza AM, Fantino E, Messaabi A, Meddeb-Mouelhi F, Germain H, Desgagné-Penix I (2021) Diatoms biotechnology: Various industrial applications for a greener tomorrow. Front Mar Sci 8:636613

    Article  Google Scholar 

  • Strickland JDH, Parsons TR (1972) A Pratical Handbook of Seawater Analysis. Fisheries Research Board of Canada, Ottawa

    Google Scholar 

  • Valle KC, Nymark M, Aamot I, Hancke K, Winge P, Andresen K, Johnsen G, Brembu T, Bones AM (2014) System responses to equal doses of photosynthetically usable radiation of blue, green, and red light in the marine diatom Phaeodactylum tricornutum. PLoS One 9:e114211

    Article  PubMed  PubMed Central  Google Scholar 

  • Wagner H, Jakob T, Lavaud J, Wilhelm C (2016) Photosystem II cycle activity and alternative electron transport in the diatom Phaeodactylum tricornutum under dynamic light conditions and nitrogen limitation. Photosynth Res 128:151–161

    Article  CAS  PubMed  Google Scholar 

  • Ye Y, Huang Y, Xia A, Fu Q, Liao Q, Zeng W, Zheng Y, Zhu X (2018) Optimizing culture conditions for heterotrophic-assisted photoautotrophic biofilm growth of Chlorella vulgaris to simultaneously improve microalgae biomass and lipid productivity. Bioresour Technol 270:80–87

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Wu S, Gu W, Wang L, Wang J, Gao S, Wang G (2021) Photosynthesis acclimation under severely fluctuating light conditions allows faster growth of diatoms compared with dinoflagellates. BMC Plant Biol 21:164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Brazilian Ministry of Science, Technology, Innovation and Communications (MCTIC) for financial support provided.

Funding

The research was funded by the Funding Authority for Studies and Projects (FINEP) (Agreement No. 01.10.0457.00) and by the National Council for Scientific and Technological Development (CNPq) (Case No. 407513/2013–2).

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the conception and design of the experiment. HC, CN, JBB and LRR performed the fluorescence analysis. HC, CLVB and JJM performed the molecular analysis. HC, CMB and MM performed the pigment analysis. HC, JBB and CYBO interpreted the data and discussed the results. HC drafted the article. RGL, JBB, MM, LRR, ACDB, MRFM and RBD critically reviewed the article and contributed with intellectual input. All authors approved submission of the article.

Corresponding author

Correspondence to Herculano Cella.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cella, H., Nader, C., Bastolla, C.L.V. et al. PAR regulation of photoprotection in Phaeodactylum tricornutum (Bacillariophyceae): Roles of doses and irradiances. J Appl Phycol 35, 2177–2191 (2023). https://doi.org/10.1007/s10811-023-03042-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-023-03042-8

Keywords

Navigation