Skip to main content
Log in

Development of a spectrophotometric method for quantification of C-phycocyanin in the cyanobacterium Aphanizomenon flos-aquae

  • Research
  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

This study presents the development of a reliable method for quantifying C-phycocyanin. It was found that the spectrophotometric method commonly used for C-phycocyanin quantification tends to overestimate the actual amount of C-phycocyanin in Aphanizomenon flos-aquae (AFA) samples. The aim of this study was therefore to adapt the spectrophotometric C-phycocyanin quantification method specifically for A. flos-aquae, accounting for the variation in C-phycocyanin between different cyanobacteria species. High performance liquid chromatography (HPLC) was used as reference method and to avoid interference between molecules. The existing spectrophotometric equations for quantifying AFA C-phycocyanin were adapted using a C-phycocyanin standard. The method was then used to obtain a new set of spectrophotometric quantification equations adapted to the strain of interest and ensuring the accuracy of C-phycocyanin quantification while continuing to use a rapid, simple, and inexpensive method of pigment quantification. The method developed here could also be adapted to improve quantification methods for other types of phycocyanin, cyanobacteria, and other compounds of interest that are currently quantified by spectrophotometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets generated and analyzed in the current study are available from the corresponding author on reasonable request.

References

  • Benedetti S, Benvenuti F, Pagliarani S, Francogli S, Scoglio S, Canestrari F (2004) Antioxidant properties of a novel phycocyanin extract from the blue-green alga Aphanizomenon flos-aquae. Life Sci 75:2353–2362

    Article  CAS  PubMed  Google Scholar 

  • Benedetti S, Rinalducci S, Benvenuti F, Francogli S, Pagliarani S, Giorgi L, Micheloni M, D’Amici GM, Zolla L, Canestrari F (2006) Purification and characterization of phycocyanin from the blue-green alga Aphanizomenon flos-aquae. J Chromatogr B 833:12–18

    Article  CAS  Google Scholar 

  • Bennett A, Bogorad L (1973) Complementary chromatic adaptation in a filamentous blue-green alga. J Cell Biol 58:419–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhat VB, Madyastha KM (2000) C-phycocyanin: A potent peroxyl radical scavenger in vivo and in vitro. Biochem Biophys Res Commun 275:20–25

    Article  CAS  PubMed  Google Scholar 

  • Everitt B (1998) The Cambridge dictionary of statistics. Cambridge University Press, Cambridge

    Google Scholar 

  • Bryant DA, Guglielmi G, Tandeau de Marsac N, Castets A-M, Cohen-Baziere G (1979) The structure of cyanobacterial phycobilisomes: a model. Arch Microbiol 123:113–127

    Article  CAS  Google Scholar 

  • Busnel A (2018) Etude du potentiel de la cyanobactérie Aphanizomenon flos-aquae (AFA) pour des applications alimentaires. Doctoral Thesis, Nantes

  • Chen T, Wong Y-S, Zheng W (2006) Purification and characterization of selenium-containing phycocyanin from selenium-enriched Spirulina platensis. Phytochemistry 67:2424–2430

    Article  CAS  PubMed  Google Scholar 

  • Cremonte M, Sisti D, Maraucci I, Giribone S, Colombo E, Rocchi MBL, Scoglio S (2017) The effect of experimental supplementation with the Klamath algae extract Klamin on attention-deficit/hyperactivity disorder. J Med Food 20:1233–1239

    Article  PubMed  Google Scholar 

  • Glazer AN (1994) Phycobiliproteins — a family of valuable, widely used fluorophores. J Appl Phycol 6:105–112

    Article  CAS  Google Scholar 

  • Lauceri R, Bresciani M, Lami A, Morabito G (2018) Chlorophyll a interference in phycocyanin and allophycocyanin spectrophotometric quantification. J Limnol 77:1691

    Google Scholar 

  • Menvielle-Bourg FJ, Vitacca A, Scoglio S (2011) L’algue Klamath et ses propriétés nutritionnelles. Un extrait spécifique aux effets neuromodulateurs et neuroprotecteurs. Phytothérapie 9:165–171

    Article  CAS  Google Scholar 

  • Merino JJ, Cabaña-Muñoz ME, Pelaz MJ (2020) The bluegreen algae (AFA) consumption over 48 hours increases the total number of peripheral CD34+ Cells in healthy patients: effect of short-term and long-term nutritional supplementation (curcumin/AFA) on CD34+ levels (blood). J Pers Med 10:49

    Article  PubMed  PubMed Central  Google Scholar 

  • Murakami A, Mimuro M, Ohki K, Fujita Y (1981) Absorption spectrum of allophycocyanin isolated from Anabaena cylindrica: variation of the absorption spectrum induced by changes of the physico-chemical environment. J Biochem (Tokyo) 89:79–86

  • Nichols HW, Bold HC (1965) Trichosarcina polymorpha gen. et sp. nov. J Phycol 1:34–38

    Article  Google Scholar 

  • Nowicka-Krawczyk P, Mühlsteinová R, Hauer T (2019) Detailed characterization of the Arthrospira type species separating commercially grown taxa into the new genus Limnospira (Cyanobacteria). Sci Rep 9:694

    Article  PubMed  PubMed Central  Google Scholar 

  • Padyana AK, Bhat VB, Madyastha KM, Rajashankar KR, Ramakumar S (2001) Crystal structure of a light-harvesting protein C-phycocyanin from Spirulina platensis. Biochem Biophys Res Commun 282:893–898

    Article  CAS  PubMed  Google Scholar 

  • Rinalducci S, Roepstorff P, Zolla L (2009) De novo sequence analysis and intact mass measurements for characterization of phycocyanin subunit isoforms from the blue-green alga Aphanizomenon flos-aquae. J Mass Spectrom 44:503–515

    Article  CAS  PubMed  Google Scholar 

  • Safari R, Amiri ZR, Kenari RE (2017) Antioxidant and antibacterial activities of C-phycocyanin from common name Spirulina platensis. Iran J Fish Sci 19:1911–1927

    Google Scholar 

  • Seyidoglu N, Inan S, Aydin C (2017) A prominent superfood: Spirulina platensis. In: Shiomi N, Waisundara V (eds) Superfood and functionl food, Ch. 1. IntechOpen, Riejeka pp 1–27. https://doi.org/10.5772/66118

  • Soni B, Kalavadia B, Trivedi U, Madamwar D (2006) Extraction, purification and characterization of phycocyanin from Oscillatoria quadripunctulata—Isolated from the rocky shores of Bet-Dwarka, Gujarat, India. Process Biochem 41:2017–2023

    Article  CAS  Google Scholar 

  • Syrpas M, Bukauskaitė J, Ramanauskienė K, Karosienė JR, Majienė D, Bašinskienė L, Venskutonis PR (2020) Ultrasound-assisted extraction and assessment of biological activity of phycobiliprotein-rich aqueous extracts from wild cyanobacteria (Aphanizomenon flos-aquae). J Agric Food Chem 68:1896–1909

    Article  CAS  PubMed  Google Scholar 

  • Thomas J-C (1989) L’antenne collectrice d’énergie lumineuse à phycobiliprotéines chez les cyanobactéries. Bull Soc Bot Fr Actual Bot 136:31–49

    Google Scholar 

  • Zavřel T, Chmelík D, Sinetova MA, Červený J (2018) Spectrophotometric determination of phycobiliprotein content in cyanobacterium Synechocystis. J Vis Exp 139:58076

    Google Scholar 

  • Zolla L, Bianchetti M (2001) High-performance liquid chromatography coupled on-line with electrospray ionization mass spectrometry for the simultaneous separation and identification of the Synechocystis PCC 6803 phycobilisome proteins. J Chromatogr A 912:269–279

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the helpful discussions with Benoit Degrenne, Ph.D. and Jack Hoeniges, Ph.D. for correcting the English in this paper.

Funding

The authors thank the Pays de la Loire regional council for funding this work within the scientific framework of the applicable “Bone Health” chair.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The materials were prepared by Delphine Drouin and Julie Billy, and data collected and analyzed by Julie Billy. The first draft of the manuscript was written by Julie Billy, and Olivier Goncalves commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Olivier Gonçalves.

Ethics declarations

Competing interests

The authors have no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Billy, J., Pruvost, J., Lépine, O. et al. Development of a spectrophotometric method for quantification of C-phycocyanin in the cyanobacterium Aphanizomenon flos-aquae. J Appl Phycol 35, 1715–1726 (2023). https://doi.org/10.1007/s10811-023-03011-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-023-03011-1

Keywords

Navigation