Skip to main content
Log in

Effect of nitrate on Ankistrodesmus fusiformis culture: evaluation of growth, biomolecules and extracellular polymeric substances (EPS)

  • Research
  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The aim was to test the effect of nitrate (NO3) supplementation and restriction on biomass production, synthesis of biomolecules and extracellular polymeric substances (EPS) in the microalga Ankistrodesmus fusiformis. The treatments contained BG-11 medium + different concentrations of NO3: 0.5 g (T0.5); 1.0 g (T1.0); 1.5 g (T1.5); BG-11 under NO3 limitation (TN) and control containing only BG-11 (TC). TN showed higher production of biomass (0.68 g L−1), µ (0.50 day−1) and proteins (11.16 µg mL−1). Carbohydrate content decreased with increasing NO3 concentration in the treatments. T1.5 had the highest lipid content (49.30 mg). The major fatty acids were C16:0; C18:3n3; C18:1n9c and C18:2n6c. Higher saturation was observed in treatments with lower concentrations of NO3 and TN, inverse behavior to the monounsaturated. The TN treatment showed high EPS production (30.90 mg L−1). Therefore, globally TN was the best treatment, due to its high biomass production, high EPS synthesis and relevant production of lipids and proteins, together with reduced use of nitrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Albalasmeh A, Berhe AA, Ghezzehei TA (2013) A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry. Carbohydr Polym 97:253–261

    Article  CAS  PubMed  Google Scholar 

  • Bácsi I, Novák Z, Jánószky M, B-Béres V, Grigorszky I, Nagy SA (2015) The sensitivity of two Monoraphidium species to zinc: their possible future role in bioremediation. Int J Environ Sci Technol 12:2455–2466

    Article  Google Scholar 

  • Benvenuti G, Bosma R, Cuaresma M, Janssen M, Barbosa MJ, Wijffels RH (2015) Selecting microalgae with high lipid productivity and photosynthetic activity under nitrogen starvation. J Appl Phycol 27:1425–1431

    Article  CAS  Google Scholar 

  • Berges JA, Falkowski PG (1998) Physiological stress and cell death in marine phytoplankton: induction of proteases in response to nitrogen or light limitation. Limnol Oceanogr 43:129–135

    Article  CAS  Google Scholar 

  • Berges JA, Charlebois DO, Mauzerall DC, Falkowski PG (1996) Differential effects of nitrogen limitation on photosynthetic efficiency of photosystems I and II in microalgae. Plant Physiol 110:689–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantites of protein utilizing the principle of protein-dye binding. Anal Biochem 7:248–254

    Article  Google Scholar 

  • Cabanelas LTD, Kleinegris DMM, Wijffels RH, Barbosa MJ (2016) Repeated nitrogen starvation doesn’t affect lipid productivity of Chlorococcum littorale. Bioresour Technol 219:576–582

  • Cardoso LG, Duarte JH, Andrade BB, Lemos PVF, Costa JAV, Druzian JI, Chinalia FA (2020) Spirulina sp. LEB-18 cultivation in outdoor pilot scale using aquaculture wastewater: high biomass, carotenoid, lipid and carbohydrate production. Aquaculture 525:735272

  • Cassuriaga APA, Moraes L, Morais MG, Costa JAV (2020) Polyhydroxybutyrate production and increased macromolecule content in Chlamydomonas reinhardtii cultivated with xylose and reduced nitrogen levels. Int J Biol Macromol 158:875–883

    Article  CAS  PubMed  Google Scholar 

  • Costa JAV, Colla LM, Duarte Filho P, Kabke K, Weber A (2002) Modelling of Spirulina platensis growth in fresh water using response surface methodology. World J Microbiol Biotechnol 18:603–607

    Article  Google Scholar 

  • Costa SS, Miranda AL, Andrade BB, Assis DJ, Souza CO, Morais MG, Costa JAV, Druzian JI (2018) Influence of nitrogen on growth, biomass composition, production, and properties of polyhydroxyalkanoates (PHAs) by microalgae. Int J Biol Macromol 116:552–562

    Article  CAS  PubMed  Google Scholar 

  • Daneshvar E, Antikainen L, Koutra E, Kornaros M, Bhatnagar A (2018) Investigation on the feasibility of Chorella vulgaris cultivation in mixture of pulp and aquaculture effluents: Treatment of wastewater and lipid extraction. Bioresour Technol 255:104–110

    Article  CAS  PubMed  Google Scholar 

  • de Jesus CS, Uebel LS, Costa SS, Miranda AL, Morais EG, Morais MG, Costa JAV, Nunes L, Ferreira ES, Druzian JI (2018) Outdoor pilot-scale cultivation of Spirulina sp. LEB-18 in different geographic locations for evaluating its growth and chemical composition. Bioresour Technol 256:86–94

  • Delattre C, Pierre G, Laroche C, Michaud P (2016) Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. Biotech Adv 34:1159–1179

    Article  CAS  Google Scholar 

  • Dong HP, Williams E, Wang DZ, Xie ZX, Hsia RC, Jenck A, Halden R, Li J, Chen F, Place AR (2013) Responses of Nannochloropsis oceanica IMET1 to long-term nitrogen starvation and recovery. Plant Physiol 162:1110–1126

  • Dragone G, Fernandes BD, Abreu AP, Vicente AA, Teixeira JA (2011) Nutrient limitation as a strategy for increasing starch accumulation in microalgae. Appl Energy 88:3331–3335

    Article  CAS  Google Scholar 

  • Dubinsky Z, Berman-Frank I (2001) Uncoupling primary production from population grow thin photosynthesizing organisms aquatic ecosystems. Aquat Sci 63:4–17

    Article  CAS  Google Scholar 

  • Folch J, Lees M, Sloane GHS (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    Article  CAS  PubMed  Google Scholar 

  • Gaignard C, Laroch C, Pierre G, Dubessay P, Delattre C, Gardarina C, Gourvil P, Probert I, Dubuffetc A, Michaud P (2019) Screening of marine microalgae: investigation of new exopolysaccharide producers. Algal Res 44:101711

    Article  Google Scholar 

  • Gardner RD, Lohman E, Gerlach R, Cooksey KE, Peyton BM (2013) Comparison of CO2 and bicarbonate as inorganic carbon sources for triacylglycerol and starch accumulation in Chlamydomonas reinhardtii. Biotechnol Bioeng 110:87–96

    Article  CAS  PubMed  Google Scholar 

  • Goo BG, Baek G, Choi DJ, Park YI, Synytsya A, Bleha R, Seong DH, Lee CG, Park JK (2013) Characterization of a renewable extracellular polysaccharide from defatted microalgae Dunaliella tertiolecta. Bioresource Technol 129:343–350

  • Halaj M, Paulovicová E, Paulovicová L, Jantová S, Cepák V, Lukavsky J, Capek P (2019) Extracellular biopolymers produced by Dictyosphaerium family – chemical and immunomodulative properties. Int J Biol Macromol 121:1254–1263

    Article  CAS  PubMed  Google Scholar 

  • Ho SH, Nakanishi A, Ye X, Chang JS, Chen CY, Hasunuma T, Kondo A (2015) Dynamic metabolic profiling of the marine microalga Chlamydomonas sp. JSC4 and enhancing it is oil production by optimizing light intensity. Biotechnol Biofuels 18:48

  • Ikaran Z, Suárez-Alvarez S, Urreta I, Castañón S (2015) The effect of nitrogen limitation on the physiology and metabolism of Chlorella vulgaris var L3. Algal Res 10:134–144

    Article  Google Scholar 

  • Iqbal M, Zafar SI (1993) Effects of photon flux density, CO2, aeration rate and inocculum density on growth and extracelular polysaccharide production by Porphyridium cruentum. Folia Microbiol 38:509–514

    Article  Google Scholar 

  • Jaeger L, Verbeek R, Draaisma RB, Martens DE, Springer J, Eggink G, Wijffels RH (2014) Superior triacylglycerol (TAG) accumulation in starchless mutants of Scenedesmus obliquus: (I) Mutant generation and characterization. Biotechnol Biofuels 7:69

  • Jebsen C, Norici A, Wagner H, Palmucci M, Giordano M, Wilhelm C (2012) FTIR spectra of algal species can be used as physiological fingerprints to assess their actual growth potential. Physiol Plant 146:427–438

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Yoshida T, Quigg A (2012) Photosynthetic performance, lipid production and biomass composition in response to nitrogen limitation in marine microalgae. Plant Physiol Biochem 54:70–77

    Article  CAS  PubMed  Google Scholar 

  • Kamalanathan M, Pierangelini M, Shearman LA, Gleadow R, Beardall J (2016) Impacts of nitrogen and phosphorus stavartion on the physiology of Chlamydomonas reinhardtii. J Appl Phycol 28:1509–1520

    Article  CAS  Google Scholar 

  • Kaur S,  Hérault J, Caruso A, Pencréac’h G, Come M, Gauvry L, Claverol S, Loiseau C (2021) Proteomics and expression studies on lipids and fatty acids metabolic genes in Isochrysis galbana under the combined influence of nitrogen starvation and sodium acetate supplementation. Bioresour Technol Rep 15:100714

  • Laroche C (2022) Exopolysaccharides from microalgae and cyanobacteria: Diversity of strains, production strategies and applications. Mar Drugs 20:336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laurens LML, Wolfrum EJ (2011) Feasibility of spectroscopic characterization of algal lipids: chemometric correlation of NIR and FTIR spectra with exogenous lipids in algal biomass. Bioenerg Res 4:22–35

    Article  Google Scholar 

  • Leal D, Matsuhiro B, Rossi M, Caruso F (2008) FT-IR spectra of alginic acid block fractions in three species of brown seaweeds. Carbohydr Res 343:308–316

    Article  CAS  PubMed  Google Scholar 

  • Liao Q, Sun Y, Huang Y, Xia A, Fu Q, Zhu X (2017) Simultaneous enhancement of Chlorella vulgaris growth and lipid accumulation through the synergy effect between light and nitrate in a planar waveguide flat-plate photobioreactor. Bioresour Technol 243:528–538

    Article  CAS  PubMed  Google Scholar 

  • Lupatini AL, Bispo LO, Colla LM, Costa JAV, Canan C, Colla E (2017) Protein and carbohydrate extraction from S. platensis biomass by ultrasound and mechanical agitation. Food Res Int 99:1028–1035

    Article  CAS  PubMed  Google Scholar 

  • Markou G, Vandamme D, Muylaert K (2014) Microalgal and cyanobacterial cultivation: the supply of nutrients. Water Res 15:186–202

    Article  Google Scholar 

  • Mayers JJ, Vaiciulyte S, Malmhäll-Bah E, Alcaide-Sancho J, Ewald S, Godhe A, Ekendahl S, Albers E (2018) Identifying a marine microalgae with high carbohydrate productivities under stress and potential for efficient flocculation. Algal Res 31:430–442

    Article  Google Scholar 

  • Nagappan S, Kumar G (2021) Investigation of four microalgae in nitrogen deficient synthetic wastewater for biorefinery based biofuel production. Environ Technol Innov 23:101572

    Article  CAS  Google Scholar 

  • Nicolaus B, Panico A, Lama L, Romano I, Manca MC, De Giulio A, Gambacorta A (1999) Chemical composition and production of exopolysaccharides from representative members of heterocystous and non-heterocystous cyanobacteria. Phytochemistry 52:639–647

    Article  CAS  Google Scholar 

  • Pancha I, Chokshi K, George B, Ghosh T, Paliwal C, Maurya R, Mishra S (2014) Nitrogen stress triggered biochemical and morphological changes in the microalgae Scenedesmus sp. CCNM 1077. Bioresour Technol 156:146–154

    Article  CAS  PubMed  Google Scholar 

  • Pereira L, Amado AM, Critchley AT, van de Velde F, Ribeiro-Claro PJA (2009) Identification of selected seaweed polysaccharides (phycocolloids) by vibrational spectroscopy (FTIR-ATR and FT-Raman). Food Hydrocol 23:1903–1909

    Article  CAS  Google Scholar 

  • Phalanisong P, Plangklang P, Reungsang A (2021) Photoautotrophic and mixotrophic cultivation of polyhydroxyalkanoate-accumulating microalgae consortia selected under nitrogen and phosphate limitation. Molecules 26:7613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pirastru L, Darwish M, Chu FL, Perreault F, Sirois L, Sleno L, Popovic R (2012) Carotenoid production and change of photosynthetic functions in Scenedesmus sp. Exposed to nitrogen limitation and acetate treatment. J Appl Phycol 24:117–124

    Article  CAS  Google Scholar 

  • Pozzobon V, Levasseur W, Guerin C, Gaveau-Vaillant N, Pointcheval M, Perré P (2020) Desmodesmus sp. pigment and FAME profiles under different illuminations and nitrogen status. Bioresour Technol Rep 10:100409

    Article  Google Scholar 

  • Ranadheera P, Konaa R, Sreeharshaa RV, Mohana SV (2019) Non-lethal nitrate supplementation enhances photosystem II efficiency in mixotrophic microalgae towards the synthesis of proteins and lipids. Bioresour Technol 283:373–377

    Article  Google Scholar 

  • Rausch T (1981) The estimation of micro-algal protein content and its meaning to the evaluation of algal biomass I. Comparison of methods for extracting protein. Hydrobiologia 78:237–251

    Article  CAS  Google Scholar 

  • Rezasoltani S, Vahabzadeh P, Shariatmadari Z, Ghanati F (2019) Cyanobacterial extract as a source of nutrients for mixotrophic growth of Chlorella vulgaris and Nannochloropsis oculata. Algal Res 39:101480

    Article  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Singh P, Guldhe A, Kumari S, Rawat I, Bux F (2015) Investigation of combined effect of nitrogen, phosphorus and iron on lipid productivity of microalgae Ankistrodesmus falcatus KJ671624 using response surface methodology. Biochem Eng 94:22–29

    Article  CAS  Google Scholar 

  • Sivaramakrishnan R, Incharoensakdi A (2016) Enhancement of total lipid yield by nitrogen, carbon, and iron supplementation in isolated microalgae. J Phycol 53:855–868

    Article  Google Scholar 

  • Yao C, Ai J, Cao X, Xue S, Zhang W (2012) Enhancing starch production of a marine green microalga Tetraselmis subcordiformis subcordiformis through nutrient limitation. Bioresor Technol 118:438–444

    Article  CAS  Google Scholar 

  • Young EB, Beardall J (2003) Photosynthetic function in Dunaliella tertiolecta (Chlorophyta) during a nitrogen starvation and recovery cycle. J Phycol 39:897–905

    Article  CAS  Google Scholar 

  • Zarrinmehr MJ, Farhadian O, Paykan-Heyrati F, Keramat J, Koutra E, Kornaros M, Daneshvar E (2019) Effect of nitrogen concentration on the growth rate and biochemical composition of the microalga, Isocrysis galbana. Egypt J Aquat Res 46:153–158

    Article  Google Scholar 

  • Zhu S, Feng P, Feng J, Xu J, Wang Z, Xu J, Yuan Z (2018) The roles of starch and lipid in Chlorella sp. during cell recovery from nitrogen starvation. Bioresour Technol 247:58–65

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to dedicate the paper to PhD Janice Izabel Druzian (In memoriam) at the College of Pharmacy, Federal University of Bahia for all the teachings provided. Your legacy will be carried on—our eternal gratitude.

Funding

The authors thank the National Council for Scientific and Technological Development—CNPq (CNPq-313641/2019–6 and INCT MIDAS CNPq-465594/2014–0), and FAPESP—São Paulo State Research Support Foundation (2020/15688–1).

Author information

Authors and Affiliations

Authors

Contributions

Lucas Guimarães Cardoso: Conceptualization, Methodology, Investigation, Writing – original draft, Writing—review & editing. Bianca Bomfim Andrade: Formal analysis, Writing – original draft. Jamila Sueira de Jesus Silva: Formal analysis, Writing – original draft, Jânia Betânia Alves da Silva: Formal analysis, Writing – original draft. Denilson de Jesus Assis: Formal analysis, Writing – original draft. Natalia Santana Carvalho: Formal analysis, Writing – original draft. Jaqueline Carmo da Silva: Formal analysis. Carolina Oliveira de Souza: Project administration; Resources; Supervision, Funding acquisition. Ana Teresa Lombardi: Conceptualization, Project administration; Resources; Supervision, Funding acquisition.

Corresponding author

Correspondence to Lucas Guimarães Cardoso.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardoso, L.G., Andrade, B.B., de Jesus Silva, J.S. et al. Effect of nitrate on Ankistrodesmus fusiformis culture: evaluation of growth, biomolecules and extracellular polymeric substances (EPS). J Appl Phycol 35, 1037–1045 (2023). https://doi.org/10.1007/s10811-023-02964-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-023-02964-7

Keywords

Navigation