Skip to main content
Log in

Application of CRISPR-Cas9 genome editing by microinjection of gametophytes of Saccharina japonica (Laminariales, Phaeophyceae)

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9-mediated genome editing has been used for reverse genetics studies in many organisms. However, application to commercially important species of seaweeds is still limited. The genetics and breeding technologies for species of the Laminariales will be advanced by developing a genome editing tool. In this study, we attempted to edit a counter-selectable marker, the adenine phosphoribosyl transferase (APT) gene using CRISPR-Cas9 ribonucleoprotein (RNP) complexes delivered by microinjection into gametophytes of Saccharina japonica. After injection of CRISPR-Cas9 RNP, 2-fluoroadenine (2-FA) was added to the medium (10–40 μM) to select APT mutants. Twenty-three female and 12 male 2-FA resistant gametophytes had mutations in their APT genes. Genome editing efficiency for the injection trials was 8.64% and 4.46% for the female and male gametophytes, respectively. The apt mutant gametophytes were able to produce sperm or eggs. Sporophytes derived by crossing sperm and eggs from apt mutant gametophytes were resistant to 40 μM 2-FA. Sporophytes derived from crosses with one wild type and one mutant parent also showed resistance to high concentrations (20–40 μM) of 2-FA, while wild-type sporophytes died in 10 μM 2-FA. This is the first report showing the validity of gene editing of S. japonica using the CRISPR-Cas9 RNP complex and microinjection method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Ahmed S, Cock JM, Pessia E, Luthringer R, Cormier A, Robuchon M, Sterck L, Peters AF, Dittami SM, Corre E, Valero M, Aury JM, Roze D, Van de Peer Y, Bothwell J, Marais GA, Coelho SM (2014) A haploid system of sex determination in the brown alga Ectocarpus sp. Curr Biol 24:1945–1957

    Article  CAS  PubMed  Google Scholar 

  • Badis Y, Scornet D, Harada M, Caillard C, Godfroy O, Raphalen M, Gachon CMM, Coelho SM, Motomura T, Nagasato C, Cock JM (2021) Targeted CRISPR-Cas9-based gene knockouts in the model brown alga Ectocarpus. New Phytol 231:2077–2091

    Article  CAS  PubMed  Google Scholar 

  • Buschmann AH, Camus C (2019) An introduction to farming and biomass utilisation of marine macroalgae. Phycologia 58:443–445

    Article  Google Scholar 

  • Buschmann AH, Camus C, Infante J, Neori A, Israel A, Hernández-González MC, Pereda SV, Gomez-Pinchetti JL, Golberg A, Tadmor-Shalev N, Critchley AT (2017) Seaweed production: overview of the global state of exploitation, farming and emerging research activity. Eur J Phycol 52:391–406

    Article  Google Scholar 

  • Chi S, Wang G, Liu T, Wang X, Liu C, Jin Y, Yin H, Xu X, Yu J (2020) Transcriptomic and proteomic analysis of mannitol-metabolism-associated genes in Saccharina japonica. Genom Proteom Bioinf 2020:415–429

    Article  Google Scholar 

  • Christie H, Norderhaug KM, Fredriksen S (2009) Macrophytes as habitat for fauna. Mar Ecol Prog Ser 396:221–233

    Article  Google Scholar 

  • FAO (2018) The state of world fisheries and aquaculture 2018. Food and Agriculture Organization of the United Nations-Meeting the Sustainable Development Goals. Fisheries and Aquaculture Department, Rome

    Google Scholar 

  • Filbee-Dexter K, Wernberg T (2018) Rise of turfs: a new battlefront for globally declining kelp forests. Bioscience 68:64–76

    Article  Google Scholar 

  • Gagnon JA, Valen E, Thyme SB, Huang P, Akhmetova L, Pauli A, Montague TG, Zimmerman S, Richter C, Schier AF (2014) Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs. PLoS One 9:e98186

    Article  PubMed  PubMed Central  Google Scholar 

  • Graham MH (2004) Effects of local deforestation on the diversity and structure of southern California giant kelp forest food webs. Ecosystems 7:341–357

    Article  Google Scholar 

  • Groisillier A, Shao Z, Michel G, Goulitquer S, Bonin P, Krahulec S, Nidetzky B, Duan D, Boyen C, Tonon T (2014) Mannitol metabolism in brown algae involves a new phosphatase family. J Exp Bot 65:559–570

    Article  CAS  PubMed  Google Scholar 

  • Harley CD, Anderson KM, Demes KW, Jorve JP, Kordas RL, Coyle TA, Graham MH (2012) Effects of climate change on global seaweed communities. J Phycol 48:1064–1078

    Article  CAS  PubMed  Google Scholar 

  • Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu ZM, Shan TF, Zhang J, Zhang QS, Critchley AT, Choi HG, Yotsukura N, Liu FL, Duan DL (2021) Kelp aquaculture in China: a retrospective and future prospects. Rev Aquac 13:1324–1351

    Article  Google Scholar 

  • Ichihara K, Yamazaki T, Kawano S (2022) Genome editing using a DNA-free clustered regularly interspaced short palindromic repeats-Cas9 system in green seaweed Ulva prolifera. Phycol Res 70:50–56

    Article  CAS  Google Scholar 

  • Jiang P, Qin S, Tseng CK (2003) Expression of the lacZ reporter gene in the sporophytes of the seaweed Laminaria japonica (Phaeophyceae) by gametophyte-targeted transformation. Plant Cell Rep 21:1211–1216

    Article  CAS  PubMed  Google Scholar 

  • Lane CE, Mayes C, Druehl LD, Saunders GW (2006) A multi-gene molecular investigation of the kelp (Laminariales, Phaeophyceae) supports substantial taxonomic re-organization. J Phycol 42:493–512

    Article  CAS  Google Scholar 

  • Li F, Qin S, Jiang P, Wu Y, Zhang W (2009) The integrative expression of GUS gene driven by FCP promoter in the seaweed Laminaria japonica (Phaeophyta). J Phycol 21:287–293

    Article  CAS  Google Scholar 

  • Lipinska AP, Ahmed S, Peters AF, Faugeron S, Cock JM, Coelho SM (2015) Development of PCR-based markers to determine the sex of kelps. PLoS One 10:e0140535

    Article  PubMed  PubMed Central  Google Scholar 

  • Lipinska AP, Toda NR, Heesch S, Peters AF, Cock JM, Coelho SM (2017) Multiple gene movements into and out of haploid sex chromosomes. Genome Biol 18:104

    Article  PubMed  PubMed Central  Google Scholar 

  • Motomura T, Sakai Y (1981) Effect of chelated iron in culture media on oogenesis in Saccharina angustata. Bull Jap Soc Sci Fish 47:1535–1540

    Article  CAS  Google Scholar 

  • Motomura T, Sakai Y (1984) Ultrastructural studies of gametogenesis in Laminaria angustata (Laminariales, Phaeophyta) regulated by iron concentration in the medium. Phycologia 23:331–343

    Article  Google Scholar 

  • Nagasato C, Terauchi M, Tanaka A, Motomura T (2015) Development and function of plasmodesmata in zygotes of Fucus distichus. Bot Mar 58:229–238

    Article  CAS  Google Scholar 

  • Nagasato C, Tanaka A, Ito T, Katsaros C, Motomura T (2017) Intercellular translocation of molecules via plasmodesmata in the multiseriate filamentous brown alga, Halopteris congesta (Sphacelariales, Phaeophyceae). J Phycol 53:333–341

    Article  CAS  PubMed  Google Scholar 

  • Nagasato C, Kawamoto H, Tomioka T, Tsuyuzaki S, Kosugi C, Kato T, Motomura T (2020) Quantification of laminarialean zoospores in seawater by real-time PCR. Psychol Res 68:57–62

    CAS  Google Scholar 

  • Provasoli L (1963) Growing marine seaweeds. In: De Virville D, Feldman J (eds) Proceedings of the Fourth International Seaweed Symposium. Pergamon Press, Oxford, pp 9–17

    Google Scholar 

  • Qin S, Zhang J, Li WB, Wang XH, Tong S, Sun YR, Tseng CK (1994) Transient expression of GUS gene in Phaeophytes using Biolistic Particle Delivery System. Oceanol Limnol Sin 25:353–356 (in Chinese with English abstract)

    Google Scholar 

  • Serif M, Dubois G, Finoux AL, Teste MA, Jallet D, Daboussi F (2018) One-step generation of multiple gene knock-outs in the diatom Phaeodactylum tricornutum by DNA-free genome editing. Nat Commun 9:3924

    Article  PubMed  PubMed Central  Google Scholar 

  • Steneck RS, Graham MH, Bourque BJ, Corbett D, Erlandson JM, Estes JA, Tegner MJ (2002) Kelp forest ecosystems: biodiversity, stability, resilience and future. Environ Conserv 29:436–459

    Article  Google Scholar 

  • Sudo K, Watanabe K, Yotsukura N, Nakaoka M (2019) Predictions of kelp distribution shifts along the northern coast of Japan. Ecol Res 35:47–60

    Article  Google Scholar 

  • Tatewaki M (1966) Formation of a crustaceous sporophyte with unilocular sporangia in Scytosiphon lomentaria. Phycologia 6:62–66

    Article  Google Scholar 

  • Teagle H, Hawkins SJ, Moore PJ, Smale DA (2017) The role of kelp species as biogenic habitat formers in coastal marine ecosystems. J Exp Mar Biol Ecol 492:81–98

    Article  Google Scholar 

  • Terada R, Shikada S, Watanabe Y, Nakazaki Y, Matsumoto K, Kozono J, Saino N, Nishihara GN (2016) Effect of PAR and temperature on the photosynthesis of Japanese alga, Ecklonia radicosa (Laminariales), based on field and laboratory measurements. Phycologia 55:178–186

    Article  CAS  Google Scholar 

  • Terada R, Abe M, Abe T, Aoki M, Masakazu A, Dazai A, Endo H, Kamiya M, Kawai H, Kurashima A, Motomura T, Murase N, Sakanishi Y, Shimabukuro H, Tanaka J, Yoshida G, Aoki MA (2021) Japan’s nationwide long-term monitoring survey of seaweed communities known as the “Monitoring Sites 1000”: ten-year overview and future perspectives. Phycol Res 69:12–30

    Article  CAS  Google Scholar 

  • Vergés A, Steinberg PD, Hay ME, Poore AGB, Campbell AH, Ballesteros E, Heck KL Jr, Booth DJ, Coleman MA, Feary DA, Figueira W, Langlois T, Marzinelli EM, Mizerek T, Mumby PJ, Nakamura Y, Roughan M, van Sebille E, Gupta AS et al (2014) The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts. Proc R Soc B 281:20140846

    Article  PubMed  PubMed Central  Google Scholar 

  • Vergés A, Doropoulos C, Malcolm HA, Skye M, Garcia-Pizá M, Marzinelli EM, Campbell AH, Ballesteros E, Hoey AS, Vila-Concejo A, Bozec Y-M, Steinberg PD (2016) Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc Natl Acad Sci U S A 113:13791–13796

    Article  PubMed  PubMed Central  Google Scholar 

  • Vergés A, McCosker E, Mayer-Pinto M, Coleman MA, Wernberg T, Ainsworth T, Steinberg PD (2019) Tropicalisation of temperate reefs: implications for ecosystem functions and management actions. Funct Ecol 33:1000–1013

    Article  Google Scholar 

  • Watanabe Y, Nishihara GN, Tokunaga S, Terada R (2014) The effect of irradiance and temperature responses and the phenology of a native alga, Undaria pinnatifida (Laminariales), at the southern limit of its natural distribution in Japan. J Appl Phycol 26:2405–2415

    Article  CAS  Google Scholar 

  • Wernberg T, Russell BD, Moore PJ, Ling SD, Smale DA, Campbell A, Coleman MA, Steinberg PD, Kendrick GA, Connell SD (2011) Impacts of climate change in a global hotspot for temperate marine biodiversity and ocean warming. J Exp Mar Biol Ecol 400:7–16

    Article  Google Scholar 

  • Wernberg T, Smale DA, Tuya F, Thomsen MS, Langlois TJ, De Bettignies T, Bennett S, Rousseaux CS (2013) An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat Clim Chang 3:78

    Article  Google Scholar 

  • Wernberg T, Bennett S, Babcock RC, de Bettingnies T, Cure K, Depczynski M, Dufois F, Fromont J et al (2016) Climate-driven regime shift of a temperate marine ecosystem. Science 353:169–172

    Article  CAS  PubMed  Google Scholar 

  • Yamagishi T, Motomura T, Nagasato C, Kato A, Kawai H (2007) A tubular mastigoneme-related protein, Ocm1, isolated from the flagellum of a chromophyte alga, Ochromonas danica. J Phycol 43:519–527

    Article  CAS  Google Scholar 

  • Ye N, Zhang X, Miao M, Fan X, Zheng Y, Xu D, Wang J, Zhou L, Wang D, Gao Y, Wang Y, Shi W, Ji P, Li D, Guan Z, Shao C, Zhuang Z, Gao Z, Qi J, Zhao F (2015) Saccharina genomes provide novel insight into kelp biology. Nat Commun 6:6986

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Li X, Zhang X, Li Y, Wang L (2021) Bacterial alginate metabolism: An important pathway for bioconversion of brown algae. Biotechnol Biofuels 14:158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

We would like to thank Dr. J Mark Cock, Station Biologique de Roscoff for his critical reading of the manuscript and helpful suggestions. We also would like to express our gratitude to Mr. Minori Harada (Department of Algal Development and Evolution Max Planck Institute for Biology Tübingen) for giving a useful technical suggestion for microinjection and genome editing.

Funding

This paper is based on results obtained from a project JPNP14004, commissioned by the New Energy and Industrial Technology Development Organization (NEDO).

Author information

Authors and Affiliations

Authors

Contributions

Yuan Shen performed design of crRNA, microinjection, and selection by 2-FA and crossing experiments. Taizo Motomura isolated and maintained the cultured S. japonica strain. Kensuke Ichihara, Yusuke Matsuda and Ko Yoshimura designed methodology. Chika Kosugi and Chikako Nagasato designed this project and methodology, and critically reviewed the manuscript. All authors have written and edited the manuscript.

Corresponding author

Correspondence to Chikako Nagasato.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Figure 1

The APT gene (locusID: SJ15126) of S. japonica. a Coding sequence. b Deduced amino acid sequence (PNG 446 kb)

High Resolution Image (TIF 18580 kb)

Supplementary Figure 2

Delivery of CRISPR-Cas9 RNP into a male gametophyte using microinjection. a–c Just after injection. Bright-field image of the injected gametophyte (a), fluorescence of FITC-dextran loaded into two cells indicating an arrow (b), and merged image of a and b (c). d–h Development of a 2-FA-resistant cell. Five days after injection (d), 3 days (e), 10 days (f), 20 days (g), 30 days (h) from the beginning of 2-FA treatment. Bars, 100 μm (PNG 887 kb)

High Resolution Image (TIF 25697 kb)

Supplementary Figure 3

Sanger sequencing chromatographs of PCR products from 2-FA-resistant gametophytes. The range of the chromatograph and individual names correspond to Table 1. Green for adenine (A), red for thymine (T), blue for cytosine (C) and black for guanine (G) (PNG 3156 kb)

High Resolution Image (TIF 76002 kb)

Supplementary Figure 4

Crossing experiment with Wild type (WT) and apt mutant gametophytes. a–d One-month old thalli derived from the following crosses: WT-female × WT-male (a), WT-female × Δapt-male (b), Δapt-female × WT-male (c), Δapt-female × Δapt-male (d). Bar, 1 mm (PNG 1393 kb)

High Resolution Image (TIF 24069 kb)

Supplementary Figure 5

Sequence data of PCR products amplified by female-specific primers. Capital letters are regions of the exon, the primers are shown by underlines. (PNG 58 kb)

High Resolution Image (TIF 12826 kb)

Supplementary Table S1

(PNG 551 kb)

High Resolution Image (TIF 13707 kb)

Supplementary Table S2

(PNG 454 kb)

High Resolution Image (TIF 21502 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Motomura, T., Ichihara, K. et al. Application of CRISPR-Cas9 genome editing by microinjection of gametophytes of Saccharina japonica (Laminariales, Phaeophyceae). J Appl Phycol 35, 1431–1441 (2023). https://doi.org/10.1007/s10811-023-02940-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-023-02940-1

Keywords

Navigation