Skip to main content
Log in

Chlorella vulgaris cultivation using ricotta cheese whey as substrate for biomass production

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The batch production of Chlorella vulgaris and its potential to profit the remnant nutritional components from ricotta cheese whey (RCW) were evaluated. From a first screening test, undiluted ricotta cheese whey was selected to be used as a growth media in the subsequent assays. Three different RCW pre-treatment methods were tested and compared: centrifugation, heat treatment (HT) and tangential flow microfiltration (TFMF). Based on the results of the screening test, a macronutrient supplementation assay was performed to increase the biomass production. A central composite design was used to analyse the effect of supplementing the media with nitrogen (0; 3.3 and 6.6 g L−1) and phosphorous (0; 0.27 and 0.55 g L−1). Chlorella vulgaris was able to grow in all tested RCW concentrations. All RCW pre-treatment methods resulted in an enhancement of the growth kinetic parameters (GKP) of Chlorella vulgaris. Among them, TFMF technology presented the best performance. The macronutrient supplementation did not show an enhancement in GKP. The scaled-up production until 400 mL batch using micro-filtered RCW showed a μmax value of 0.41 ± 0.05 h−1 (9.9 ± 1.2 day−1), a lag period of 19.9 ± 0.7 h and a Cmax of 2.52 ± 0.09. A final biomass concentration of 2.28 g L−1 was obtained. In addition, chemical oxygen demand (COD), phosphorus and nitrogen removals of 26 ± 1%, 75 ± 1% and 55 ± 1% were respectively achieved. The use of TFMF and Chlorella vulgaris cultivation represents a sustainable proposal for contributing to the circular economy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  • Abreu AP, Fernandes B, Vicente AA, Teixeira J, Dragone G (2012) Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. Bioresour Technol 118:61–66

    Article  CAS  PubMed  Google Scholar 

  • Agüero R, Bringas E, San Román MF, Ortiz I, Ibáñez R (2017) Membrane processes for whey proteins separation and purification. A Review Curr Organ Chem 21:1740–1752

    Google Scholar 

  • Atra R, Vatai G, Bekassy-Molnar E, Balint A (2005) Investigation of ultra- and nanofiltration for utilization of whey protein and lactose. J Food Eng 67:325–332

    Article  Google Scholar 

  • Amanullah A, Bucland B, Nienow A (2004) Mixing in the fermentation and cell culture industries. In: Paul EL, Atiemo-Obeng VA, Kresta SM (eds) Handbook of Industrial Mixing. Wiley & Sons, NY, pp 1071–1170

    Google Scholar 

  • Anthony J, Sivashankarasubbiah KT, Thonthula S, Rangamaran VR, Gopal D, Ramalingam K (2018) An efficient method for the sequential production of lipid and carotenoids from the Chlorella Growth Factor-extracted biomass of Chlorella vulgaris. J Appl Phycol 30:2325–2335

    Article  CAS  Google Scholar 

  • Boor K, Fromm H (2006) Managing microbial spoilage in the dairy industry. In: Blackburn C de W (ed) Food spoilage microorganisms . CRC Press, Boca Raton, pp 171–193.

  • Borowitzka MA (1988) Fats, oils and hydrocarbons. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge, pp 257–287

    Google Scholar 

  • Borowitzka MA, Vonshak A (2017) Scaling up microalgal cultures to commercial scale. Eur J Phycol 52:407–418

    Article  CAS  Google Scholar 

  • Busatto S, Vilanilam G, Ticer T, Lin WL, Dickson DW, Shapiro S, Paolo Bergese P, Wolfram J (2018) Tangential flow filtration for highly efficient concentration of extracellular vesicles from large volumes of fluid. Cells 7:273

    Article  CAS  PubMed Central  Google Scholar 

  • Candido C, Lombardi AT (2017) Growth of Chlorella vulgaris in treated conventional and biodigested vinasses. J Appl Phycol 29:45–53

    Article  CAS  Google Scholar 

  • Carota E, Crognale S, D’Annibale A, Gallo AM, Stazi SR, Petruccioli M (2017) A sustainable use of Ricotta Cheese Whey for microbial biodiesel production. Sci Total Environ 585:554–560

    Article  Google Scholar 

  • Chandra R, Rohit MV, Swamy YV, Venkata Mohan S (2014) Regulatory function of organic carbon supplementation on biodiesel production during growth and nutrient stress phases of mixotrophic microalgae cultivation. Bioresour Technol 165:279–287

    Article  CAS  PubMed  Google Scholar 

  • Cheng P, Wang Y, Osei-Wusu D, Liu T, Liu D (2018) Effects of seed age, inoculum density, and culture conditions on growth and hydrocarbon accumulation of Botryococcus braunii SAG807-1 with attached culture. Bioresour Bioprocess 5:15

    Article  Google Scholar 

  • Cheng Y, Lu Y, Gao C, Wu Q (2009) Alga-Based biodiesel production and optimization using sugar cane as the feedstock. Energy Fuels 23:4166–4173

    Article  CAS  Google Scholar 

  • Chia MA, Lombardi AT, da Melão M, GG, Parrish CC, (2017) Phosphorus levels determine changes in growth and biochemical composition of Chlorella vulgaris during cadmium stress. J Appl Phycol 29:1883–1891

    Article  CAS  Google Scholar 

  • Chiu SY, Kao CY, Chen TY, Chang YB, Kuo CM, Lin CS (2014) Cultivation of microalgal Chlorella for biomass and lipid production using wastewater as nutrient resource. Bioresour Technol 184:179–189

    Article  PubMed  Google Scholar 

  • Choix FJ, Ochoa-Becerra MA, Hsieh-Lo M, Mondragón-Cortez P, Méndez-Acosta HO (2018) High biomass production and CO2 fixation from biogas by Chlorella and Scenedesmus microalgae using tequila vinasses as culture medium. J Appl Phycol 30:2247–2258

    Article  CAS  Google Scholar 

  • Daufin G, Escudier JP, Carrere H, Berot S, Fillaudeau L, Decloux M (2001) Recent and emerging applications of membrane processes in the food and dairy industry. Food Bioprod Process 79:89–102

    Article  CAS  Google Scholar 

  • Das C, Naseera K, Ram A, Meena RM, Ramaiah N (2017) Bioremediation of tannery wastewater by a salt-tolerant strain of Chlorella vulgaris. J Appl Phycol 29:235–243

    Article  CAS  Google Scholar 

  • Destainville A, Champion E, Bernache-Assollant D, Laborde E (2003) Synthesis, characterization and thermal behavior of apatitic tricalcium phosphate. Mater Chem Phys 80:269–277

    Article  CAS  Google Scholar 

  • Ende SSW, Noke A (2018) Heterotrophic microalgae production on food waste and by-products. J Appl Phycol 31:1565–1571

    Article  Google Scholar 

  • Enzing C, Ploeg M, Barbosa M, Sijtsma L, authors Vigani M, Parisi C, Rodriguez Cerezo E, editors. Microalgae-based products for the food and feed sector: an outlook for Europe. EUR 26255. Luxembourg (Luxembourg): Publications Office of the European Union; 2014. JRC85709

  • Escapa C, Coimbra RN, Paniagua S, García AI, Otero M (2017) Comparison of the culture and harvesting of Chlorella vulgaris and Tetradesmus obliquus for the removal of pharmaceuticals from water. J Appl Phycol 29:1179–1193

    Article  CAS  Google Scholar 

  • Espinosa-Gonzalez I, Parashar A, Bressler DC (2014) Heterotrophic growth and lipid accumulation of Chlorella protothecoides in whey permeate, a dairy by-product stream, for biofuel production. Bioresour Technol 155:170–176

    Article  CAS  PubMed  Google Scholar 

  • Farooq W, Lee YC, Ryu BG, Kim BH, Kim HS, Choi YE, Yang JW (2013) Two-stage cultivation of two Chlorella sp. strains by simultaneous treatment of brewery wastewater and maximizing lipid productivity. Bioresour Technol 132:230–238

    Article  CAS  PubMed  Google Scholar 

  • Gao C, Zhai Y, Ding Y, Wu Q (2010) Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides. Appl Energ 87:756–761

    Article  CAS  Google Scholar 

  • Garbisu C, Hall D, Llama MJ, Serra JL (1994) Inorganic nitrogen and phosphate removal from water by free-living and polyvinyl-immobilized Phormidium laminosum in batch and continuous-flow bioreactors. Enzyme Microb Tech 16:395–401

    Article  CAS  Google Scholar 

  • Ge S, Champagne P (2016) Nutrient removal, microalgal biomass growth, harvesting and lipid yield in response to centrate wastewater loadings. Water Res 88:604–612

    Article  CAS  PubMed  Google Scholar 

  • Genevois C, Flores S, de Escalada PM (2016) Byproduct from pumpkin (Cucurbita moschata Duchesne ex poiret) as a substrate and vegetable matrix to contain Lactobacillus casei. J Funct Foods 23:210–219

    Article  CAS  Google Scholar 

  • Genevois C, Pieniazek F, Messina V, Flores S, de Escalada PM (2019) Bioconversion of pumpkin by-products in novel supplements supporting Lactobacillus casei. Food Sci Technol 105:23–29

    CAS  Google Scholar 

  • González-Camejo J, Montero P, Aparicio S, Ruano MV, Borrás L, Seco A, Barat R (2020) Nitrite inhibition of microalgae induced by the competition between microalgae and nitrifying bacteria. Water Res 172:115499

  • Grobbelaar JU (2004) Algal nutrition. In: Richmond A (ed) Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Blackwell, Oxford, pp 116–124

    Google Scholar 

  • Guizard C, Amblard P (2009) Current status and prospects for ceramic membrane applications. In: Pabby AK, Rizvi SSH, Sastre AM (eds.) Handbook of membrane separations. Chemical, pharmaceutical, food and biotechnological applications, CRC Press, Boca Raton pp 139–179.

  • Huisman IH, Trägårdh C (1999) Particle transport in crossflow microfiltration—I Effects of hydrodynamics and diffusion. Chem Eng Sci 54:271–280

    Article  CAS  Google Scholar 

  • Kong W, Yang S, Wang H, Huo H, Guo B, Liu N, Zhang A, Niu S (2020) Regulation of biomass, pigments, and lipid production by Chlorella vulgaris 31 through controlling trophic modes and carbon sources. J Appl Phycol 32:1569–1579

    Article  CAS  Google Scholar 

  • Kuriyel R, Fushijima M, Jung GW (2009) Advancements in membrane processes for hharmaceutical applications. In: Pabby AK, Rizvi SSH, Sastre AM (eds.) Handbook of membrane separations. Chemical, pharmaceutical, food and biotechnological applications. CRC Press, Boca Raton pp 409–426

  • Lavarda J (1972) Preparation of ricotta cheese curd. United States Patent 3,704,136 A

  • Liang Y, Sarkany N, Yi Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett 31:1043–1049

    Article  CAS  PubMed  Google Scholar 

  • Lois-Milevicich J, Casá N, Alvarez P, Mateucci R, Busto V, de Escalada PM (2020) Chlorella vulgaris biomass production using brewery wastewater with high chemical oxygen demand. J Appl Phycol 32:2773–2783

    Article  CAS  Google Scholar 

  • Lu Y, Ding Y, Wu Q (2011) Simultaneous saccharification of cassava starch and fermentation of algae for biodiesel production. J Appl Phycol 23:115–121

    Article  CAS  Google Scholar 

  • Lu Y, Zhai Y, Liu M, Wu Q (2010) Biodiesel production from algal oil using cassava (Manihot esculenta Crantz) as feedstock. J Appl Phycol 22:573–578

    Article  CAS  Google Scholar 

  • Martínez C, Mairet F, Bernard O (2018) Theory of turbid microalgae cultures. J Theor Biol 456:190–200

    Article  PubMed  Google Scholar 

  • Mata TM, Melo AC, Simões M, Caetano NS (2012) Parametric study of a brewery effluent treatment by microalgae Scenedesmus obliquus. Bioresour Technol 107:151–158

    Article  CAS  PubMed  Google Scholar 

  • Maubois JL, Ollivier G (1997) Extraction of milk protein. In: Damodaran S, Paraf A (eds) Food Proteins and their Applications. Marcel Dekker, New York, pp 579–595

    Google Scholar 

  • Mennaa FZ, Arbib Z, Perales JA (2015) Urban wastewater treatment by seven species of microalgae and an algal bloom: Biomass production, N and P removal kinetics and harvestability. Water Res 83:42–51

    Article  CAS  PubMed  Google Scholar 

  • Meyers AJ, Grohs BM, Hall JC (2019) Antibody production in planta. In: Grodinski B  (ed) Comprehensive Biotechnology, 3rd Edn. Vol. 4. Agricultural and related technologies. Pergamon, London, pp 300–314

    Chapter  Google Scholar 

  • Moheimani NR, Borowitzka MA, Isdepsky A, Fon Sing S (2013) Standard methods for measuring growth of algae and their composition. In: Borowitzka MA, Moheimani NR (eds) Algae for Biofuels and Energy, Springer, Dordrecht, pp 265–284

  • Moraru CI, Schrader EU (2009) Applications of membrane separation in the brewing industry. In: Pabby AK, Rizvi SSH, Sastre AM (eds.) Handbook of membrane separations. Chemical, pharmaceutical, food and biotechnological applications. CRC Press, Boca Raton, pp 553–579

  • Mulvihill DM, Donovan M (1987) Whey proteins and their thermal denaturation - A review. Irish J Food Sci Tec 11:43–75

    CAS  Google Scholar 

  • Nam K, Lee H, Heo SW, Chang YK, Han JI (2017) Cultivation of Chlorella vulgaris with swine wastewater and potential for algal biodiesel production. J Appl Phycol 29:1171–1178

    Article  CAS  Google Scholar 

  • Nieto Calvache JE, Soria M, de EscaladaPla MF, Gerschenson LN (2017) Optimization of the production of dietary fiber concentrates from by-products of papaya (Carica papaya L var formosa) with microwave assistance Evaluation of its physicochemical and functional characteristics. J Food Process Preserv 41:e13071

    Article  Google Scholar 

  • Nwoba EG, Mickan BS, Moheimani NR (2019) Chlorella sp. growth under batch and fed-batch conditions with effluent recycling when treating the effluent of food waste anaerobic digestate. J Appl Phycol 31:3545–3556

    Article  CAS  Google Scholar 

  • Raposo MF, Oliveira SE, Castro PM, Bandarra NM, Morais RM (2010) On the utilization of microalgae for brewery effluent treatment and possible applications of the produced biomass. J Inst Brewing 116:285–292

    Article  CAS  Google Scholar 

  • Riera F, González P, Muro C (2016) Whey cheese: membrane technology to increase yields. J Dairy Res 83:96–103

    Article  CAS  PubMed  Google Scholar 

  • Ruiz J, Álvarez P, Arbib Z, Garrido C, Barragán J, Perales JA (2011) Effect of nitrogen and phosphorus concentration on their removal kinetic in treated urban wastewater by Chlorella vulgaris. Int J Phytoremediat 13:884–896

    Article  CAS  Google Scholar 

  • Salvatore E, Pes M, Falchi G, Pagnozzi D, Furesi S, Fiori M, Roggio T, Addis MF, Pirisi A (2014) Effect of whey concentration on protein recovery in fresh ovine ricotta cheese. J Dairy Sci 97:4686–4694

    Article  CAS  PubMed  Google Scholar 

  • Sansonetti S, Curcio S, Calabrò V, Iorio G (2009) Bio-ethanol production by fermentation of ricotta cheese whey as an effective alternative non-vegetable source. Biomass Bioenergy 33:1687–1692

    Article  CAS  Google Scholar 

  • Sastre AM, Pabby AK, Rizvi SSH (2009) Membrane applications in chemical and pharmaceutical industries and in conservation of natural resources. In: Pabby AK, Rizvi SSH, Sastre AM (eds.) Handbook of membrane separations. Chemical, pharmaceutical, food and biotechnological applications, CRC Press, Boca Raton, pp 3–5

  • Secchi N, Giunta D, Pretti L, García MR, Roggio T, Mannazzu I, Catzeddu P (2012) Bioconversion of ovine scotta into lactic acid with pure and mixed cultures of lactic acid bacteria. J Ind Microbiol Biotechnol 39:175–181

    Article  CAS  PubMed  Google Scholar 

  • Sharma YC, Singh B, Korstad J (2011) A critical review on recent methods used for economically viable and eco-friendly development of microalgae as a potential feedstock for synthesis of biodiesel. Green Chem 13:2993–3006

    Article  CAS  Google Scholar 

  • Song M, Pei H, Hu W, Ma G (2013) Evaluation of the potential of 10 microalgal strains for biodiesel production. Bioresour Technol 141:245–251

    Article  CAS  PubMed  Google Scholar 

  • Stanier RY, Kunisawa R, Mandel M (1971) Purification and properties of unicellular blue-green algae (Order Chroococcales). Bacteriol Rev 35:171–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Wang C, Li Z, Wang W, Tong Y, Wei J (2013) Microalgal cultivation in wastewater from the fermentation effluent in Riboflavin (B2) manufacturing for biodiesel production. Bioresour Technol 143:499–504

    Article  CAS  PubMed  Google Scholar 

  • Taziki M, Ahmadzadeh H, Murry M (2016) Growth of Chlorella vulgaris in high concentrations of nitrate and nitrite for wastewater treatment. Curr Biotechnol 4:441-447

  • Teles I, Cabanelas D, Ruiz J, Arbib Z, Alexandre F, Garrido-Pérez C, Rogalla F, Andrade I, Perales JA (2013) Comparing the use of different domestic wastewaters for coupling microalgal production and nutrient removal. Bioresour Technol 131:429–436

    Article  Google Scholar 

  • Travieso L, Benítez F, Sánchez E, Borja R, Léon M, Raposo F, Rincón B (2008) Assessment of a microalgae pond for post-treatment of the effluent from an anaerobic fixed bed reactor treating distillery wastewater. Environ Technol 29:985–992

    Article  CAS  PubMed  Google Scholar 

  • Travieso L, Benıtez F, Sanchez E, Borja R, Martín A, Colmenarejo MF (2006) Batch mixed culture of Chlorella vulgaris using settled and diluted piggery waste. Ecol Eng 28:158–165

    Article  Google Scholar 

  • Urrutia I, Serra JL, Llama MJ (1995) Nitrate removal from water by Scenedesmus obliquus immobilized in polymeric foams. Enzyme Microb Tech 17:200–205

    Article  CAS  Google Scholar 

  • Velichkova KN, Sirakov IN, Beev GG, Denev SA, Pavlov DH (2016) Treatment of wastewater originating from aquaculture and biomass production in laboratory algae bioreactor using different carbon sources. Sains Malays 45:601–608

    CAS  Google Scholar 

  • Wang L, Min M, Li Y, Chen P, Chen Y, Liu Y, Wang Y, Ruan R (2010) Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl Biochem Biotech 162:1174–1186

    Article  CAS  Google Scholar 

  • Wang Y, Guo W, Yen H, Ho S, Lo Y, Cheng C, Ren N, Chang J (2015) Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient / COD removal and carbohydrate production. Bioresour Technol 198:619–625

    Article  CAS  PubMed  Google Scholar 

  • Xiao R, Zheng Y (2016) Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotechnol Adv 34:1225–1244

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Lu H, Yuanhui Z, Ma S, Liu Z, Duan N, Liu M, Si B, Lu J (2017) Effects of strain, nutrients concentration and inoculum size on microalgae culture for bioenergy from post hydrothermal liquefaction wastewater. Int J Agric Biol Eng 10:194–204

    Google Scholar 

  • Zwietering MH, Jongenburger I, Rombouts FM, Riet KV (1990) Modeling of the bacterial growth curve. Appl Environ Microb 56:1875–1881

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors want to acknowledge the Microalgae Laboratory of Universidad Nacional Patagónica San Juan Bosco for supplying the C. vulgaris strain, Lácteos Javifer dairy for supplying the RCW, the Dairy Centre of the National Institute of Industrial Technology for the analytical equipment provided and the technical support of its professionals, the Chemical Engineering Department of the Faculty of Buenos Aires (FRBA) of the National Technological University (UTN) and Juan Francisco Vivas for improving the written English style.

Funding

This study was financially supported by the National Interuniversity Council (CIN) through the Scholarship granted by the Resolution CE N° 1334/18 within frame of the Strategic Program for Human Resources Training in Research and Development (PERHID) and by the Secretary of University Policies (SPU). Universidad Tecnológica Nacional (Project ID: IPUTIBA0004740TC and PDTSO-2019 Res CS 782/19).

Author information

Authors and Affiliations

Authors

Contributions

Nahuel Casá: Conceptualization, project administration, funding acquisition, formal analysis, data curation and writing—original draft. Julieta Lois-Milevicich: Formal analysis and investigation. Paola Alvarez: Methodology, investigation and resources. Ricardo Mateucci: Methodology, investigation and resources. Marina de Escalada Pla: Conceptualization, methodology, supervision and writing—review and editing. All authors read and approved the manuscript.

Corresponding author

Correspondence to Marina de Escalada Pla.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casá, N.E., Lois-Milevicich, J., Alvarez, P. et al. Chlorella vulgaris cultivation using ricotta cheese whey as substrate for biomass production. J Appl Phycol 34, 745–756 (2022). https://doi.org/10.1007/s10811-022-02685-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-022-02685-3

Keywords

Navigation