Skip to main content

Advertisement

Log in

Seasonal variations in growth and phytochemical compounds of cultivated red alga, Hypnea flagelliformis, in southern coastlines of Iran

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Global utilization of seaweeds for food, chemicals, pharmaceuticals, and production of polysaccharide is increasing and seaweeds are becoming the most important cultivated marine organisms. This study assessed the cultivation potential of the red alga, Hypnea flagelliformis, along the southern coastlines of Iran using monoline plastic rope method, with regard to several environmental parameters of seawater over a year (November 2017 to October 2018). Correlations between relative growth rate (RGR) and environmental parameters were investigated using Pearson correlation analysis. Biochemical composition contents (moisture, ash, protein, and lipid) of the cultivated samples were measured during the experiment. Yield and structural properties of the extracted carrageenan using aqueous and alkali-treated extraction of the samples were investigated using Fourier transform infrared (FT-IR) spectroscopy. This study showed that this species can grow only in 6 months of the year (November to April) in outdoor conditions. The highest relative growth rate (9 ± 0.4% day−1) was obtained in December. Salinity and temperature had significant impacts on the growth of H. flagelliformis. The biochemical composition content range for moisture (86.76-91.76% fw), ash (30-39% dw), total protein (1.40-3.03% dw), and lipid (1.08-3.15% dw) varied during the experiment. The yield of alkali-treated carrageenan (mean 34.5 ± 2.5% dw) was higher than aqueous method (mean 20.7 ± 1.3% dw). FT-IR analysis indicated that the extracted hydrocolloids are mainly from κ-carrageenan type. The findings demonstrate that H. flagelliformis has good potential for cultivation and as a carrageenan source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alves MGCF, Almeida-Lima J, Paiva AAO, Leite EL, Rocha HAO (2016) Extraction process optimization of sulfated galactan-rich fractions from Hypnea musciformis in order to obtain antioxidant, anticoagulant, or immunomodulatory polysaccharides. J Appl Phycol 28:1931–1942

    Article  CAS  Google Scholar 

  • Anonymous (2021) Global Carrageenan Market-Trends and Forecasts:(2016 - 2021) (Segmented by types, applications, grades and geography). Available on: http://www.researchandmarkets.com/research/4hqkfx/global. Accessed 2 March 2021

  • AOAC (2000) Official methods of analysis, Association of Official Analytical Chemists. Washington, DC

  • Arman M, Qader SAU (2012) Structural analysis of kappa-carrageenan isolated from Hypnea musciformis (red algae) and evaluation as an elicitor of plant defense mechanism. Carbohydr Polym 88:1264–1271

    Article  CAS  Google Scholar 

  • Athithan S (2014) Growth performance of a seaweed, Kappaphycus alvarezii under lined earthen pond condition in Tharuvaikulam of Thoothukudi coast, South East of India. Res J Anim Vet Fish Sci 2:6–10

    Google Scholar 

  • Aziza M, Givernaud T, Chikhaoui-Khay M, Bennasser L (2008) Seasonal variation of the growth, chemical composition and carrageenan extracted from Hypnea musciformis (Wulfen) Lamouroux harvested along the Atlantic coast of Morocco. Sci Res Essays 3:509–514

    Google Scholar 

  • Balamurugan M, Selvam GG, Thinakaran T, Sivakumar K (2013) Biochemical study and GC-MS analysis of Hypnea musciformis (Wulf.) Lamouroux. Am-Eurasian J Sci Res 8(3): 117–123.

  • Bellorin AM, Buriyo A, Sohrabipour J, Oliveira MC, Oliveira EC (2008) Gracilariopsis mclachlanii sp. nov. and Gracilariopsis persica sp. nov. of the Gracilariaceae (Gracilariales, Rhodophyceae) from the Indian Ocean. J Phycol 44:1022–1032

  • Bezerra AF, Marinho-Soriano E (2010) Cultivation of the red seaweed Gracilaria birdiae (Gracilariales, Rhodophyta) in tropical waters of northeast Brazil. Biomass Bioenergy 34:1813–1817

    Article  Google Scholar 

  • Bixler HJ, Porse H (2010) A decade of change in the seaweed hydrocolloids industry. J Appl Phycol 23:321–335

    Article  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Castelar B, De Siqueira MF, Sánchez-Tapia A, Reis RP (2015) Risk analysis using species distribution modeling to support public policies for the alien alga Kappaphycus alvarezii aquaculture in Brazil. Aquaculture 446:217–226

    Article  Google Scholar 

  • Castelar B, Reis RP, Azeredo F, Mattos P, Berardinelli G (2016) Hypnea musciformis: alternative or complement to the production of Kappaphycus alvarezii introduced in tropical countries? Aquac Res 47:3538–3550

    Article  CAS  Google Scholar 

  • Chandrasekaran S, Nagendran NA, Pandiaraj D, Krishnankutty N, Kamalakannan B (2008) Bioinvasion of Kappaphycus alvarezii on corals in the Gulf of Mannar, India. Curr Sci 94:1167–1172

    Google Scholar 

  • Conklin EJ, Smith JE (2005) Abundance and spread of the invasive red algae, Kappaphycus spp., in Kane’ohe Bay, Hawai’i and an experimental assessment of management options. Biol Invasions 7:1029–1039

    Article  Google Scholar 

  • De Faveri C, Schmidt ÉC, Simioni C, Martins CD, Bonomi-Barufi J, Horta PA, Bouzon ZL (2015) Effects of eutrophic seawater and temperature on the physiology and morphology of Hypnea musciformis J.V. Lamouroux (Gigartinales, Rhodophyta). Ecotoxicology 24:1040–1052

    Article  PubMed  CAS  Google Scholar 

  • Ding L, Ma Y, Huang B, Chen S (2013) Effects of seawater salinity and temperature on growth and pigment contents in Hypnea cervicornis J. Agardh (Gigartinales, Rhodophyta). Biomed Res Int 2013:594308

    PubMed  PubMed Central  Google Scholar 

  • Durako MJ, Dawes C (1980) A comparative seasonal study of two populations of Hypnea musciformis from the East and West Coasts of Florida, USA I. Growth and chemistry. Mar Biol 59:151–156

    Article  CAS  Google Scholar 

  • Edwards MD, Dring MJ (2011) Open-sea cultivation trial of the red alga, Palmaria palmata from seeded tetraspores in Strangford Lough, Northern Ireland. Aquaculture 317:203–209

    Article  Google Scholar 

  • Faccini AL, Berchez F (2000) Management of natural beds and standing stock evaluation of Hypnea musciformis (Gigartinales, Rhodophyta) in south-eastern Brazil. J Appl Phycol 12:101–103

    Article  Google Scholar 

  • Farahpour M, Abkenar AM, Notash GR (2009) Alga cultural survey on three species: Sargassum ilicifolium, Hypnea musciformis and Cystoseira indica in Chabahar seashore, Iran. Iran J Medicin Aroma Plant 26(3):297–304.

  • FAO (2003) Fruit and vegetable promotion initiative. UN Food & Agriculture Organisation, Rome

    Google Scholar 

  • FAO (2018) The state of food security and nutrition in the world 2018: building climate resilience for food security and nutrition. UN Food & Agriculture Organisation, Rome

    Google Scholar 

  • Ganesan M, Thiruppathi S, Jha B (2006) Mariculture of Hypnea musciformis (Wulfen) Lamouroux in South east coast of India. Aquaculture 256:201–211

    Article  Google Scholar 

  • Geraldino PJL, Yang EC, Sook Kim M, Min Boo S (2009) Systematics of Hypnea asiatica sp. nov. (Hypneaceae, Rhodophyta) based on morphology and nrDNA SSU, plastid rbcL, and mitochondrial cox1. Taxon 58:606–616

    Article  Google Scholar 

  • Greer CW, Shomer I, Goldstein ME, Yaphe W (1984) Analysis of carrageenan from Hypnea musciformis by using κ-and ι-carrageenanases and 13C-NMR spectroscopy. Carbohydr Res 129:189–196

    Article  CAS  Google Scholar 

  • Guist Jr GG, Dawes CJ, Castle JR (1982) Mariculture of the red seaweed, Hypnea musciformis. Aquaculture 28:375–384

    Article  Google Scholar 

  • Guo Q, Liu L, Barkla BJ (2019) Membrane lipid remodeling in response to salinity. Int J Mol Sci 20:4264 1-31

    Article  CAS  PubMed Central  Google Scholar 

  • Haroon A, Szaniawska A, Normant M, Janas U (2000) The biochemical composition of Enteromorpha spp. from the Gulf of Gdańsk coast on the southern Baltic Sea. Oceanologia 42

  • Holdt SL, Kraan S (2011) Bioactive compounds in seaweed: functional food applications and legislation. J Appl Phycol 23:543–597

    Article  CAS  Google Scholar 

  • Jassbi AR, Mohabati M, Eslami S, Sohrabipour J, Miri R (2013) Biological activity and chemical constituents of red and brown algae from the Persian Gulf. Iranian J Pharm Res 12:339

    CAS  Google Scholar 

  • Kaehler S, Kennish R (1996) Summer and winter comparisons in the nutritional value of marine macroalgae from Hong Kong. Bot Mar 39:11–18

    Article  Google Scholar 

  • Kim SK (ed) (2011) Handbook of marine macroalgae: biotechnology and applied phycology. Wiley, NY

  • Kokabi M, Yousefzadi M (2015) Checklist of the marine macroalgae of Iran. Bot Mar 58:307–320

    Article  Google Scholar 

  • Lawton RJ, de Nys R, Magnusson ME, Paul NA (2015) The effect of salinity on the biomass productivity, protein and lipid composition of a freshwater macroalga. Algal Res 12:213–220

    Article  Google Scholar 

  • Lobban CS, Harrison PJ, Harrison PJ (1994) Seaweed ecology and physiology. Cambridge University Press, Cambridge

  • Martin AP, Necchi Junior O, Colepicolo P, Yokoya NS (2011) Effects of nitrate and phosphate availabilities on growth, photosynthesis and pigment and protein contents in colour strains of Hypnea musciformis  (Wulfen in Jacqu.) J.V. Lamour. (Gigartinales, Rhodophyta). Rev Bras Farmacogn 21(2): 340–348.  

  • Moein S, Moein M, Ebrahimi N, Farmani F, Sohrabipour J, Rabiei R (2015) Extraction and determination of protein content and antioxidant properties of ten algae from Persian Gulf. Int J Aquat Sci 2:29–38

    Google Scholar 

  • Nasir M, Saeidnia S, Mashinchian-Moradi A, Gohari AR (2011) Sterols from the red algae, Gracilaria salicornia and Hypnea flagelliformis, from Persian Gulf. Pharmacogn Mag 7:97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nauer F, Ayres-Ostrock L, Amorim AM, Santos JP, Chow F, Plastino EM, Oliveira MC (2019) Life history, growth, and pigment content of two morphological variants of Hypnea pseudomusciformis (Gigartinales, Rhodophyta). J Appl Phycol 31:1271–1284

    Article  Google Scholar 

  • Pereira L, Amado AM, Critchley AT, Van de Velde F, Ribeiro-Claro PJ (2009) Identification of selected seaweed polysaccharides (phycocolloids) by vibrational spectroscopy (FTIR-ATR and FT-Raman). Food Hydrocoll 23:1903–1909

    Article  CAS  Google Scholar 

  • Perez Recalde M, Canelon DJ, Compagnone RS, Matulewicz MC, Cerezo AS, Ciancia M (2016) Carrageenan and agaran structures from the red seaweed Gymnogongrus tenuis. Carbohydr Polym 136:1370–1378

    Article  CAS  PubMed  Google Scholar 

  • Pickering TD, Skelton P, Sulu JR (2007) Intentional introductions of commercially harvested alien seaweeds. Bot Mar 50:338–350

    Article  Google Scholar 

  • Porse H, Rudolph B (2017) The seaweed hydrocolloid industry: 2016 updates, requirements, and outlook. J Appl Phycol 29:2187–2200

    Article  Google Scholar 

  • Prajapati VD, Maheriya PM, Jani GK, Solanki HK (2014) Carrageenan: a natural seaweed polysaccharide and its applications. Carbohydr Polym 105:97–112

    Article  CAS  PubMed  Google Scholar 

  • Qari R, Abbas Q, Khan AR (2018) Carrageenan content in three species of Hypnea (H. musciformis Wulfen J.V. Lamouroux, H. pannosa J. Agardh and H. valentiae Turner Montagne) of Karachi Coast. Int J Mar Sci 8:89–101

    Google Scholar 

  • Rafiquzzaman SM, Ahmed R, Lee JM, Noh G, G-a J, Kong I-S (2015) Improved methods for isolation of carrageenan from Hypnea musciformis and its antioxidant activity. J Appl Phycol 28:1265–1274

    Article  CAS  Google Scholar 

  • Rajasulochana N, Gunasekaran S (2009) Analysis on the seasonal variations in carrageenans of Hypnea flagelliformis and Sarconema filiforme by FTIR spectroscopy. Asian J Chem 21:4547–4552

    CAS  Google Scholar 

  • Ratana-arporn P, Chirapart A (2006) Nutritional evaluation of tropical green seaweeds Caulerpa lentillifera and Ulva reticulata. Kasetsart J 40:75–83

    CAS  Google Scholar 

  • Rhein-Knudsen N, Ale MT, Ajalloueian F, Yu L, Meyer AS (2017) Rheological properties of agar and carrageenan from Ghanaian red seaweeds. Food Hydrocoll 63:50–58

    Article  CAS  Google Scholar 

  • Rodrigues D, Freitas AC, Pereira L, Rocha-Santos TA, Vasconcelos MW, Roriz M, Rodriguez-Alcala LM, Gomes AM, Duarte AC (2015) Chemical composition of red, brown and green macroalgae from Buarcos bay in Central West Coast of Portugal. Food Chem 183:197–207

    Article  CAS  PubMed  Google Scholar 

  • Rodrigueza MRC, Montaño MNE (2007) Bioremediation potential of three carrageenophytes cultivated in tanks with seawater from fish farms. J Appl Phycol 19:755–762

    Article  CAS  Google Scholar 

  • Rupérez P (2002) Mineral content of edible marine seaweeds. Food Chem 79:23–26

    Article  Google Scholar 

  • Saeidnia S, Gohari A, Shahverdi A, Permeh P, Nasiri M, Mollazadeh K, Farahani F (2009) Biological activity of two red algae, Gracilaria salicornia and Hypnea flagelliformis from Persian Gulf. Pharm Res 1:428–430

    Google Scholar 

  • Schaffelke B, Smith JE, Hewitt CL (2006) Introduced macroalgae—a growing concern. J Appl Phycol 18:529–541

    Article  Google Scholar 

  • Siddique MAM, Aktar M, Bin Mohd Khatib MA (2013) Proximate chemical composition and amino acid profile of two red seaweeds (Hypnea pannosa and Hypnea musciformis) collected from ST. Martin’s Island, Bangladesh. J Fish Sci 7:178

    Google Scholar 

  • Silkin VAV, Dzizurov D, Chasovnikov VK, Esin NI (2012) Modelling nitrate uptake and nitrite release by seaweed. Int J Alg 14:185–200

    Google Scholar 

  • Sohrabipour J, Rabiei R (1999) A list of marine algae of seashores of Persian Gulf and Oman Sea in the Hormozgan Province. Iranian J Bot 8:131–162

    Google Scholar 

  • Sohrabipour J, Rabiei R (2007) The checklist of green algae of the Iranian coastal lines of the Persian Gulf and Gulf of Oman. Iranian J Bot 13:146–149

    Google Scholar 

  • Sohrabipour J, Rabiei R (2008) Rhodophyta of Oman Gulf (South East of Iran). Iranian J Bot 14:70–74

    Google Scholar 

  • Sohrabipour J, Nejadsatari T, Assadi M, Rabei R (2004) The marine algae of the southern coast of Iran, Persian Gulf, Lengeh area. Iranian J Bot 10:83–93

    Google Scholar 

  • Souza RB, Frota AF, Silva J, Alves C, Neugebauer AZ, Pinteus S, Rodrigues JAG, Cordeiro EMS, de Almeida RR, Pedrosa R (2018) In vitro activities of kappa-carrageenan isolated from red marine alga Hypnea musciformis: antimicrobial, anticancer and neuroprotective potential. Int J Biol Macromol 112:1248–1256

    Article  CAS  PubMed  Google Scholar 

  • Titlyanov E, Titlyanova T (2010) Seaweed cultivation: methods and problems. Russ J Mar Biol 36:227–242

    Article  Google Scholar 

  • Whitehouse LN, Lapointe BE (2015) Comparative ecophysiology of bloom-forming macroalgae in the Indian River Lagoon, Florida: Ulva lactuca, Hypnea musciformis, and Gracilaria tikvahiae. J Exp Mar Biol Ecol 471:208–216

    Article  Google Scholar 

  • Williams SL, Smith JE (2007) A global review of the distribution, taxonomy, and impacts of introduced seaweeds. Annu Rev Ecol Evol Syst 38:327–359

    Article  Google Scholar 

  • Wong K, Cheung PC (2000) Nutritional evaluation of some subtropical red and green seaweeds: part I—proximate composition, amino acid profiles and some physico-chemical properties. Food Chem 71:475–482

    Article  CAS  Google Scholar 

  • Wu W, Zhu Y, Zhang L, Yang R, Zhou Y (2012) Extraction, preliminary structural characterization, and antioxidant activities of polysaccharides from Salvia miltiorrhiza Bunge. Carbohydr Polym 87:1348–1353

    Article  CAS  Google Scholar 

  • Yokoya NS, Nauer F, Oliveira MC (2020) Concise review of the genus Hypnea JV Lamouroux, 1813. J Appl Phycol 32:3585–3603

    Article  Google Scholar 

  • Yoshie Y, Suzuki T, Shirai T, Hirano T (1994) Changes in the contents of dietary fibers, minerals, free amino acids, and fatty acids during processing of dried nori [Porphyra yezoensis]. Bull Jap Soc Sci Fish

  • Zarei Jeliani Z, Mashjoor S, Soleimani S, Pirian K, Sedaghat F, Yosefzadi M (2017a) antioxidant activity and cytotoxicity of organic extracts from three species of green macroalgae of Ulvaceae from Persian Gulf. Biotechnology Tarbiat Modares University 9:59–67

    Google Scholar 

  • Zarei Jeliani Z, Yousefzadi M, Pour JS, Toiserkani H (2017b) Growth, phytochemicals, and optimal timing of planting Gracilariopsis persica: an economic red seaweed. J Appl Phycol 30:525–533

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the University of Hormozgan and Refinery Oil Laboratory of Bandar Abbas for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jelveh Sohrabipour.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarei Jeliani, Z., Sohrabipour, J., Soltani, M. et al. Seasonal variations in growth and phytochemical compounds of cultivated red alga, Hypnea flagelliformis, in southern coastlines of Iran. J Appl Phycol 33, 2459–2470 (2021). https://doi.org/10.1007/s10811-021-02429-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-021-02429-9

Keywords

Navigation