Skip to main content
Log in

Temperature characteristics on the growth and photosynthesis of a red alga Phycocalidia tanegashimensis (= Pyropia tanegashimensis, Bangiales) reveal adaptation to subtropical environments due to year-round occurrence of the macroscopic gametophyte

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The effects of temperature on the photosynthesis and growth of a subtropical red alga, Phycocalidia tanegashimensis (= Pyropia tanegashimensis, Bangiaceae, Bangiales) from Tanegashima Island, Japan, were determined to better understand the ecology of the macroscopic gametophyte. Net photosynthesis–irradiance (P–E) curves, determined at 12, 20, and 28°C, revealed that the maximum net photosynthetic rates occurred at 28°C. A gross photosynthesis–temperature (P–T) curve, determined at temperatures between 8 and 36°C, supported this result and indicated that optimal temperature (\( {T}_{opt}^{GP} \)) for maximum gross photosynthetic rates was 27.3°C (25.9–28.8 95% highest density credible intervals, HDCI). However, after 4 days of incubation at constant temperature, the effective quantum yields (ΔF/Fm') of photosystem II, determined between 4 and 40°C under 50 μmol photons m−2 s−1 (12L:12D), were greatest at 22.1°C (20.9–23.4 HDCI) and declined quickly below 20°C and 32°C. The relative growth rate (RGR) was highest at 25.8°C (22.5–28.1 HDCI) at the conclusion of a 6-day culture (4 to 36°C) under 50 μmol photons m−2 s−1 (12L:12D). Compared to other temperate species of Bangiaceae, P. tanegashimensis appears to be well adapted to relatively high temperatures. The macroscopic gametophyte stage of Bangiaceae is regarded to be adapted to cold temperatures to overwinter; nevertheless, the significance of our study is that a year-round occurrence of P. tanegashimensis is enabled by its high optimal temperatures for photosynthesis and growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbott IA (2004) Marine red algae of the Hawaiian islands. Bishop Museum Press, Honolulu

  • Abbott IA, Hollenberg GJ (1976) Marine algae of California. Stanford University Press, Stanford

  • Abe M, Kobayashi M, Fujiyoshi E, Tamaki M, Kikuchi N, Murase N (2013) Use of PCR-RFLP for the discrimination of Japanese Porphyra and Pyropia species (Bangiales, Rhodophyta). J Appl Phycol 25:225–232

    Article  Google Scholar 

  • Alexandrov GA, Yamagata Y (2007) A peaked function for modeling temperature dependence of plant productivity. Ecol Model 200:189–192

    Article  Google Scholar 

  • Allakhverdiev SI, Kreslavski VD, Klimov VV, Los DA, Carpentier R, Mohanty P (2008) Heat stress: an overview of molecular responses in photosynthesis. Photosynth Res 98:541–550

    Article  CAS  PubMed  Google Scholar 

  • Beer S, Björk M, Beardall J (2014) Photosynthesis in the marine environment. Wiley and Sons, Ames, Iowa

  • Bellasio C, Burgess SJ, Griffiths H, Hibberd JM (2014) A high throughput gas exchange screen for determining rates of photorespiration or regulation of C4 activity. J Exp Bot 65:3769–3379

    Article  PubMed  PubMed Central  Google Scholar 

  • Bessho K, Iwasa Y (2009) Heteromorphic and isomorphic alternations of generations in macroalgae as adaptations to a seasonal environment. Evol Ecol Res 11:691–711

    Google Scholar 

  • Bessho K, Iwasa Y (2010) Optimal seasonal schedules and the relative dominance of heteromorphic and isomorphic life cycles in macroalgae. J Theor Biol 267:201–212

    Article  PubMed  Google Scholar 

  • Bessho K, Iwasa Y (2012) Variability in the evolutionarily stable seasonal timing of germination and maturation of annuals and the mode of competition. J Theor Biol 304:66–80

    Article  PubMed  Google Scholar 

  • Bürkner PC (2018) Advanced Bayesian multilevel modeling with the R package brms. R J 10:395–411

  • Davison IR (1987) Adaptation of photosynthesis in Laminaria saccharina (Phaeophyta) to changes in growth temperature. J Phycol 23:273–283

    Article  Google Scholar 

  • Drew KM (1949) Conchocelis-phase in the life-history of Porphyra umbilicalis (L.) Kütz. Nature 164:748–749

    Article  Google Scholar 

  • Drew KM (1954) Life-history of Porphyra. Nature 173:1243–1244

    Article  Google Scholar 

  • Dumilag RV, Monotilla WD (2018) Molecular diversity and biogeography of Philippine foliose Bangiales (Rhodophyta). J Appl Phycol 30:173–186

    Article  Google Scholar 

  • Dumilag RV, Aguinaldo Z-ZA, Mintu CB, Quinton MP, Ame EC, Andres RC, Monotilla WD, Yap SL, Cao EP, Vital PG, Fontanilla IKC (2017) A review of the current taxonomic status of foliose Bangiales (Rhodophyta) in the Philippines. Phytotaxa 312:47–59

    Article  Google Scholar 

  • Eggert A (2012) Seaweed responses to temperature. In: Wiencke C, Bischof K (eds) Seaweed Biology. Springer, Berlin, pp 47–66

    Chapter  Google Scholar 

  • Eggert A, Wiencke C (2000) Adaptation and acclimation of growth and photosynthesis of five Antarctic red algae to low temperatures. Polar Biol 23:609–618

    Article  Google Scholar 

  • Fujiyoshi E, Kikuchi N (2006) Growth of excised pieces containing elongated denticles from the lower marginal parts of Porphyra tanegashimensis and P. haitanensis gametophytes. Bull Fish Res Agency 16:9–13

  • Fukumoto BIA, Nishihara GN, Endo H, Terada R (2018) The photosynthetic responses to PAR and temperature including chilling-light stress on the heteromorphic life history stages of a brown alga, Cladosiphon okamuranus (Chordariaceae) from Ryukyu Islands, Japan. Phycol Res 66:209–217

    Article  CAS  Google Scholar 

  • Gao K (1990) Seasonal variation of photosynthetic capacity in Sargassum horneri. Jpn J Phycol 38:25–33

    Google Scholar 

  • Gelman A (2004) Parameterization and Bayesian modeling. J Am Stat Assoc 99:537–545

    Article  Google Scholar 

  • Gelman A (2006) Prior distributions for variance parameters in hierarchical models. Bayesian Anal 1:515–533

    Article  Google Scholar 

  • Gómez I, Wulff A, Roleda M, Huovinen P, Karsten U, Quartino ML, Dunton K, Wiencke C (2011) Light and temperature demands of marine benthic microalgae and seaweeds in polar regions. In: Wiencke C (ed) Biology of polar benthic algae. Walter de Gruyter, Berlin, pp 195–220

    Google Scholar 

  • Hanelt D, Figueroa FL (2012) Physiological and photomorphogenic effects of light on marine macrophytes. In: Wiencke C, Bischof K (eds) Seaweed Biology. Springer, Berlin, pp 3–23

    Chapter  Google Scholar 

  • Iwasaki H (1961) The life-cycle of Porphyra tenera in vitro. Biol Bull 120:173–187

    Article  Google Scholar 

  • Jassby AD, Platt T (1976) Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol Oceanogr 21:540–547

    Article  CAS  Google Scholar 

  • Kagoshima Prefectural Fisheries Technology and Development Center Website (2020) Seawater monitoring data measured by ferry boat between Kagoshima city and Amami-Oshima island. https://suigi.jp/fery/feryinfobody.aspx (Accessed 17 November 2020; in Japanese)

  • Katz S, Kizner Z, Dubinsky Z, Friedlander M (2000) Responses of Porphyra linearis (Rhodophyta) to environmental factors under controlled culture conditions. J Appl Phycol 12:535–542

    Article  Google Scholar 

  • Kawamura Y, Yamashita Y, Kito H (1991) Growth of Porphyra yezoensis f. narawaensis on culture nets in the nori farm and its environmental conditions. Suisanzoshoku 39:273–278 (in Japanese with English abstract)

    Google Scholar 

  • Kokubu S, Nishihara GN, Watanabe Y, Tsuchiya Y, Amano Y, Terada R (2015) The effect of irradiance and temperature on the photosynthesis of a native brown alga, Sargassum fusiforme (Fucales) from Kagoshima, Japan. Phycologia 54:235–247

    Article  Google Scholar 

  • Lewmanomont K, Chittpoolkusol O (1993) Life cycle of Porphyra vietnamensis Tanaka & Pham-Hoang Ho from Thailand. Hydrobiologia 260/261:397–400

    Article  Google Scholar 

  • Lewmanomont K, Ogawa H (1995) Common seaweeds and seagrasses of Thailand. Faculty of Fisheries, Kasetsart University, Bangkok

  • Lin R, Lindstrom SC, Stekoll M (2008) Photosynthesis and respiration of the conchocelis stage of Alaskan Porphyra (Bangiales, Rhodophyta) species in response to environmental variables. J Phycol 44:573–583

    Article  CAS  PubMed  Google Scholar 

  • López-Vivas JM, Riosmena-Rodríguez R, Jiménez-González de la Llave AA, Pacheco-Ruíz I, Yarish C (2015) Growth and reproductive responses of the conchocelis phase of Pyropia hollenbergii (Bangiales, Rhodophyta) to light and temperature. J Appl Phycol 27:1561–1570

    Article  Google Scholar 

  • Migita S, Abe N (1966) Formation of spores in conchocelis of Porphyra. Bull Fac Fish Nagasaki Univ 20:1–13 (in Japanese with English abstract)

    Google Scholar 

  • Migita S, Ito R (1987) The life history of Porphyra tanegashimensis (Rhodophyta, Bangiales) in laboratory culture. Bull Fac Fish Nagasaki Univ 61:7–14 (in Japanese with English abstract)

    Google Scholar 

  • Milstein D, Medeiros AS, Oliveira EC, Oliveira MC (2015) Native or introduced? A re-evaluation of Pyropia species (Bangiales, Rhodophyta) from Brazil based on molecular analyses. Eur J Phycol 50:37–45

    Article  Google Scholar 

  • Monotilla WD, Notoya M (2010) Growth and development of Porphyra marcosii (Bangiales, Rhodophyta) under different temperatures and photoperiod. Philipp J Sci 39:197–206

    Google Scholar 

  • Nelson WA, Brodie J, Guiry MD (1999) Terminology used to describe reproduction and life history stages in the genus Porphyra (Bangiales, Rhodophyta). J Appl Phycol 11:407–410

    Article  Google Scholar 

  • Notoya M, Kikuchi N, Matsuo M, Aruga Y, Miura A (1993) Culture studies of four species of Porphyra (Rhodophyta) from Japan. Nippon Suisan Gakkaishi 59:431–436

    Article  Google Scholar 

  • R Development Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org (Accessed 10 December 2020)

  • Rao GMN (1992) Seasonality in growth, reproduction and spore liberation of Porphyra vietnamensis Tanaka et Ho (Rhodophyta, Bangiales). Mahasagar 25:11–17

    Google Scholar 

  • Roleda MY (2009) Photosynthetic response of Arctic kelp zoospores exposed to radiation and thermal stress. Photobiol Sci 8:1302–1312

    Article  CAS  Google Scholar 

  • Ruangchuay R, Notoya M (2003) Physiological responses of blade and conchocelis of Porphyra vietnamensis Tanaka et Pham-Hoang Ho (Bangiales, Rhodophyta) from Thailand in Culture. Algae 18:21–28

    Article  Google Scholar 

  • Ruangchuay R, Notoya M (2007) Reproductive strategy and occurrence of gametophytes of Thai laver Porphyra vietnamensis Tanaka et Pham-Hoang Ho (Bangiales, Rhodophyta) from Songkhla province. Kasetsart J (Nat Sci) 41:143–152

    Google Scholar 

  • Sahoo D, Baweja P, Kushwah N (2006) Developmental studies in Porphyra vietnamensis: a high-temperature resistant species from the Indian coast. J Appl Phycol 18:279–286

    Article  Google Scholar 

  • Santiañez WJE (2020) Notes on the taxonomy of the Philippine endemic Porphyra marcosii Cordero (Bangiaceae, Rhodophyta). Notulae Algarum 163:1–4

    Google Scholar 

  • Santiañez WJE, Wynne MJ (2020) Proposal of Phycocalidia Santiañez & M.J. Wynne nom. nov. to replace Calidia L.-E.Yang & J. Brodie nom. illeg. (Bangiales, Rhodophyta). Notulae Algarum 140:1–3

    Google Scholar 

  • Shinmura I (1974) Porphyra tanegashimensis, a new species of Rhodophyceae from Tanegashima island in southern Japan. Bull Jpn Soc Sci Fish 40:735–749

    Article  Google Scholar 

  • Stan Development Team (2020) RStan: the R interface to Stan. R package version 2.21.3. http://mc-stan.org/ (Accessed 10 December 2020)

  • Stekoll M, Lin R, Lindstrom SC (1999) Porphyra cultivation in Alaska: conchocelis growth of three indigenous species. Hydrobiologia 398/399:291–297

    Article  Google Scholar 

  • Sutherland JE, Lindstrom SC, Nelson WA, Brodie J, Lynch MD, Hwang MS, Choi HG, Miyata M, Kikuchi N, Cliveira MC, Farr T, Neefus C, Mols-Mortensen MD, Müller K (2011) A new look at an ancient order: generic revision of the Bangiales (Rhodophyta). J Phycol 47:1131–1151

    Article  PubMed  Google Scholar 

  • Takahashi S, Murata N (2008) How do environmental stresses accelerate photoinhibition? Trends Plant Sci 13:178–182

    Article  CAS  PubMed  Google Scholar 

  • Tanaka T, Hô PH (1962) Notes of some marine algae from Viet-Nam - I. Mem Fac Fish Kagoshima Univ 11:24–40

    Google Scholar 

  • Tcherkez G, Bligny R, Gout E, Mahé A, Hodges M, Cornic G (2008) Respiratory metabolism of illuminated leaves depends on CO2 and O2 conditions. Proc Natl Acad Sci U S A 105:797–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terada R, Watanabe Y (2017) Seaweeds and coastal environment in the Osumi islands. In: Kawai K, Terada R, Kuwahara S (eds) The Osumi Islands: Culture, Society, Industry and Nature. Kagoshima University Research Center for the Pacific Islands (KURCPI). Hokuto Shobo Publishing, Tokyo, pp 104–108

    Google Scholar 

  • Terada R, Shikada S, Watanabe Y, Nakazaki Y, Matsumoto K, Kozono J, Saino S, Nishihara GN (2016) Effect of PAR and temperature on the photosynthesis of Japanese alga, Ecklonia radicosa (Laminariales), based on field and laboratory measurements. Phycologia 55:178–186

    Article  CAS  Google Scholar 

  • Terada, Matsumoto K, Borlongan IA, Watanabe Y, Nishihara GN, Endo H, Shimada S (2018) The combined effects of PAR and temperature including the chilling-light stress on the photosynthesis of a temperate brown alga, Sargassum patens (Fucales), based on field and laboratory measurements. J Appl Phycol 30:1893–1904

    Article  CAS  Google Scholar 

  • Terada R, Nakahara K, Borlongan IA, Watanabe Y, Mine T, Morikawa T, Igari T, Nishi H, Endo H, Nishihara GN (2019) Combined effects of irradiance and temperature on the PSII photochemical efficiency in the heteromorphic life history stages of cultivated Pyropia (Bangiales): P. yezoensis f. narawaensis and P. tenera from Japan. J Appl Phycol 31:1251–1257

    Article  CAS  Google Scholar 

  • Terada R, Nakashima Y, Borlongan IA, Shimabukuro H, Kozono J, Endo H, Shimada S, Nishihara GN (2020a) Photosynthetic activity including the thermal- and chilling-light sensitivities of a temperate Japanese brown alga Sargassum macrocarpum. Phycol Res 68:70–79

    Article  CAS  Google Scholar 

  • Terada R, Yuge T, Watanabe Y, Mine T, Morikawa T, Nishihara GN (2020b) Chronic effects of three different stressors, irradiance, temperature, and desiccation on the PSII photochemical efficiency in the heteromorphic life-history stages of cultivated Pyropia yezoensis f. narawaensis (Bangiales) from Japan. J Appl Phycol 32:3273–3284

    Article  CAS  Google Scholar 

  • Terada R, Abe M, Abe T, Aoki M, Dazai A, Endo H, Kamiya M, Kawai H, Kurashima A, Motomura T, Murase N, Sakanishi Y, Shimabukuro H (2021) Japan’s nationwide long-term monitoring survey of seaweed communities known as the “Monitoring Sites 1000”: ten-year overview and future perspectives. Phycol Res 69:12–30

    Article  CAS  Google Scholar 

  • Thornley JHM, Johnson IR (2000) Plant and crop modelling: a mathematical approach to plant and crop physiology. Blackburn Press, Caldwell

  • Titlyanov EA, Titlyanova TV (2012) Marine plants of the Asian-Pacific region countries, their use and cultivation. A.V. Zhirmunsky Institute of Marine Biology Ear East Branch of the Russian Academy of Sciences, Dalnauka, Vladivostok

  • Tsutsui I, Huỳnh QN, Nguyên HD, Arai S, Yoshida T (2005) The common marine plants of southern Vietnam. Japan Seaweed Association, Tosa, Kochi

  • Tsutsui I, Hamano K, Aue-Umneoy D, Songphatkaew J, Srisapoome P, Ruangsomboon S, Klomkling S, Ganmanee M, Taveekijakarn P, Maeno Y (2012) Common underwater plants in coastal areas of Thailand. JIRCAS International Agriculture Series 21, Japan International Research Center for Agricultural Sciences, Tsukuba

  • Turner MJ (2003) The ethnobotany of edible seaweed (Porphyra abbottae and related species; Rhodophyta: Bangiales) and its use by first nations on the Pacific coast of Canada. Can J Bot 81:283–293

    Article  Google Scholar 

  • Wang WJ, Wang FJ, Zhu JY, Sun XT, Yao CY, Xu P (2011) Freezing tolerance of Porphyra yezoensis (Bangiales, Rhodophyta) gametophyte assessed by chlorophyll fluorescence. J Appl Phycol 23:1017–1022

    Article  CAS  Google Scholar 

  • Watanabe Y, Nishihara GN, Tokunaga S, Terada R (2014a) Effect of irradiance and temperature on the photosynthesis of a cultivated red alga, Pyropia tenera (= Porphyra tenera), at the southern limit of distribution in Japan. Phycol Res 62:187–196

    Article  CAS  Google Scholar 

  • Watanabe NGN, Tokunaga S, Terada R (2014b) The effect of irradiance and temperature responses and the phenology of a native alga, Undaria pinnatifida (Laminariales), at the southern limit of its natural distribution in Japan. J Appl Phycol 26:2405–2415

    Article  CAS  Google Scholar 

  • Watanabe Y, Yamada H, Mine Y, Kawamura Y, Nishihara GN, Terada R (2016) The response of photosynthesis of Pyropia yezoensis f. narawaensis to a thermal and PAR gradient varies with the life-history stage. Phycologia 55:665–672

    Article  CAS  Google Scholar 

  • Watanabe Y, Morikawa T, Mine T, Kawamura Y, Nishihara GN, Terada R (2017) Chronological change and the potential of recovery on the photosynthetic efficiency of Pyropia yezoensis f. narawaensis (Bangiales) during the sporelings frozen storage treatment in the Japanese Nori cultivation. Phycol Res 65:265–271

    Article  CAS  Google Scholar 

  • Webb WL, Newton M, Starr D (1974) Carbon dioxide exchange of Alnus rubra: a mathematical model. Oecologia 17:281–291

    Article  PubMed  Google Scholar 

  • Yamamoto M, Watanabe Y, Kinoshita H (1991) Effects of water temperature on the growth of red alga Porphyra yezoensis form. narawaensis (Nori) cultivated in an outdoor raceway tank. Nippon Suisan Gakkaishi 57:2211–2217

    Article  Google Scholar 

  • Yang LE, Deng YY, Xu GP, Russell S, Lu QQ, Brodie J (2020) Redefining Pyropia (Bangiales, Rhodophyta): four new genera, resurrection of Porphyrella and description of Calidia pseudolobata sp. nov. from China. J Phycol 56:862–879

    Article  CAS  PubMed  Google Scholar 

  • Yokohama Y (1973) A comparative study on photosynthesis temperature relationships and their seasonal changes in marine benthic algae. Int Rev Gesamten Hydrobiol 58:463–472

    Article  Google Scholar 

  • Yoshida T (1998) Marine algae of Japan. Uchida Rokakuho, Tokyo (in Japanese)

  • Yoshida T, Notoya M, Kikuchi N, Miyata M (1997) Catalogue of species Porphyra in the world, with special reference to the type locality and bibliography. In: Miyata M, Notoya (eds) Proceeding of the 8th Natural History Symposium November 30, 1996, Present and future on biology of Porphyra, vol 3. Natural History Museum and Institute, Chiba. Nat Hist Res Special issue, pp 5–18

    Google Scholar 

  • Zemke-White WL, Ohno M (1999) World seaweed utilisation: An end-of-century summary. J Appl Phycol 11:369–376

    Article  Google Scholar 

  • Zhang T, Li J, Ma F, Lu Q, Shen Z, Zhu J (2014) Study of photosynthetic characteristics of the Pyropia yezoensis thallus during the cultivation process. J Appl Phycol 26:859-865

  • Zhang T, Shen Z, Xu P, Zhu J, Lu Q, Shen Y, Wang Y, Yao C, Li J, Wang Y, Jiang H (2012) Analysis of photosynthetic pigments and chlorophyll fluorescence characteristics of different strains of Porphyra yezoensis. J Appl Phycol 24:881–816

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ms. Moe Takaesu, Faculty of Fisheries, Kagoshima University, for her kind assistance in the experiments. RT also expresses his gratitude to Dr. Iwao Shinmura for his great pioneering study in P. tanegashimensis and wishes continued good health and long life. The first author GX conducted this research as an international technical trainee at the United Graduate School of Agricultural Sciences, Kagoshima University, funded by the Overseas Technical Trainee Exchange Program of the Kagoshima Prefecture Government. All authors have provided consent.

Funding

This research was supported in part by the Overseas Technical Trainee Exchange Program of the Kagoshima Prefecture Government and by the Grant-in-Aid for Scientific Research (B; # 20H03076) from the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryuta Terada.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Fig. 1

Newly recruited individuals of the red alga Phycocalidia tanegashimensis (= Pyropia tanegashimensis) from Tanegashima Island, Kagoshima, Japan, after 3 weeks culture at 24°C under the irradiance of 50 μmol photons m−2 s−1, photoperiod of 12L:12D. Their parent thalli were removed from the Petri dish (JPG 980 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, G., Terada, R., Watanabe, Y. et al. Temperature characteristics on the growth and photosynthesis of a red alga Phycocalidia tanegashimensis (= Pyropia tanegashimensis, Bangiales) reveal adaptation to subtropical environments due to year-round occurrence of the macroscopic gametophyte. J Appl Phycol 33, 1765–1775 (2021). https://doi.org/10.1007/s10811-021-02426-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-021-02426-y

Keywords

Navigation